Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 14(12): 2473-2495, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38107167

RESUMO

Recently nanoparticle-based platforms have gained interest as drug delivery systems and diagnostic agents, especially in cancer therapy. With their ability to provide preferential accumulation at target sites, nanocarrier-constructed antitumor drugs can improve therapeutic efficiency and bioavailability. In contrast, metal-organic frameworks (MOFs) have received increasing academic interest as an outstanding class of coordination polymers that combine porous structures with high drug loading via temperature modulation and ligand interactions, overcoming the drawbacks of conventional drug carriers. FeIII-based MOFs are one of many with high biocompatibility and good drug loading capacity, as well as unique Fenton reactivity and superparamagnetism, making them highly promising in chemodynamic and photothermal therapy, and magnetic resonance imaging. Given this, this article summarizes the applications of FeIII-based MOFs in three significant fields: chemodynamic therapy, photothermal therapy and MRI, suggesting a logical route to new strategies. This article concludes by summarising the primary challenges and development prospects in these promising research areas.

2.
Pharmaceutics ; 15(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37242566

RESUMO

Metal-phenolic networks (MPNs) are a new type of nanomaterial self-assembled by metal ions and polyphenols that have been developed rapidly in recent decades. They have been widely investigated, in the biomedical field, for their environmental friendliness, high quality, good bio-adhesiveness, and bio-compatibility, playing a crucial role in tumor treatment. As the most common subclass of the MPNs family, Fe-based MPNs are most frequently used in chemodynamic therapy (CDT) and phototherapy (PTT), where they are often used as nanocoatings to encapsulate drugs, as well as good Fenton reagents and photosensitizers to improve tumor therapeutic efficiency substantially. In this review, strategies for preparing various types of Fe-based MPNs are first summarized. We highlight the advantages of Fe-based MPNs under the different species of polyphenol ligands for their application in tumor treatments. Finally, some current problems and challenges of Fe-based MPNs, along with a future perspective on biomedical applications, are discussed.

3.
Chemosphere ; 307(Pt 2): 135729, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35931255

RESUMO

Nickel-based metal-organic skeletal materials (Ni-MOFs) are a new class of inorganic materials that have aroused attention of investigators during past couple of years. They offer advantages such as high specific surface area, structural diversity, tunable framework etc. This assorted class of materials exhibited catalytic activity and electrochemical properties and display wide range of applications in the fields of electrochemical sensing, electrical energy storage and electrocatalysis. In this context, the presented review focuses on strategies to improve the electrochemical performance and stability of Ni-MOFs through the optimization of synthesis conditions, the construction of composite materials, and the preparation of derivatives of precursors. The review also presents the applications of Ni-MOFs and their derivatives as electrochemical sensors, energy storage devices, and electrocatalysts. In addition, the challenges and further electrochemical development prospects of Ni-MOFs have been discussed.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Níquel
4.
Lab Chip ; 11(2): 343-7, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20957291

RESUMO

We present a long (204 mm), curved (curvature of 0.04 mm(-1)), and closed droplet pathway in "droplet-on-a-wristband" (DOW) with the designed digital microfluidic modular interfaces for electric signal and droplet connections based on the study of electrowetting-on-dielectric (EWOD) in inclined and curved devices. Instead of using sealed and leakage-proof pipes to transmit liquid and pumping pressure, the demonstrated modular interface for electrowetting-driven digital microfluidics provides simply electric and fluidic connections between two adjacent parallel-plate modules which are easy-to-attach/detach, showing the advantages of using droplets for microfluidic connections between modules. With the previously reported digital-to-channel interfaces (Abdelgawad et al., Lab Chip, 2009, 9, 1046-1051), the chip-to-chip interface presented here would be further applied to continuous microfluidics. Droplet pumping across a single top plate gap and through a modular interface with two gaps between overlapping plates are investigated. To ensure the droplet transportation in the DOW, we actuate droplets against gravity in an inclined or curved device fabricated on flexible PET substrates prepared by a special razor blade cutter and low temperature processes. Pumping a 2.5 µl droplet at a speed above 105 mm s(-1) is achieved by sequentially switching the entire 136 driving electrodes (1.5 mm × 1.5 mm) along the four flexible modules of the DOW fabricated by 4-inch wafer facilities.


Assuntos
Eletroumectação/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Humanos , Punho
5.
Lab Chip ; 7(10): 1330-5, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17896018

RESUMO

Here droplet oscillation and continuous pumping are demonstrated by asymmetric electrowetting on an open surface with embedded electrodes powered by a square wave electrical signal without control circuits. The polarity effect of electrowetting on an SU-8 and Teflon coated electrode is investigated, and it is found that the theta-V (contact angle-applied voltage) curve is asymmetric along the V = 0 axis by sessile drop and coplanar electrode experiments. A systematic deviation of measured contact angles from the theoretical ones is observed when the electrode beneath the droplet is negatively biased. In the sessile drop experiment, up to a 10 degrees increment of contact angle is measured on a negatively biased electrode. In addition, a coplanar electrode experiment is designed to examine the contact angles at the same applied potential but opposite polarities on two sides of one droplet at the same time. The design of the coplanar electrodes is then expanded to oscillate and transport droplets on square-wave-powered symmetric (square) and asymmetric (polygon) electrodes to demonstrate manipulation capability on an open surface. The frequency of oscillation and the speed of transportation are determined by the frequency of the applied square wave and the pitch of the electrodes. Droplets with different volumes are tested by square waves of varied frequencies and amplitudes. The 1.0 microl droplet is successfully transported on a device with a loop of 24 electrodes continuously at a speed up to 23.6 mm s(-1) when a 9 Hz square wave is applied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...