Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2305038, 2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37867204

RESUMO

Lithium-sulfur (Li-S) batteries have been investigated intensively as a post-Li-ion technology in the past decade; however, their realizable energy density and cycling performance are still far from satisfaction for commercial development. Although many extremely high-capacity and cycle-stable S cathodes and Li anodes are reported in literature, their use for practical Li-S batteries remains challenging due to the huge gap between the laboratory research and industrial applications. The laboratory research is usually conducted by use of a thin-film electrode with a low sulfur loading and high electrolyte/sulfur (E/S) ratios, while the practical batteries require a thick/high sulfur loading cathode and a low E/S ratio to achieve a desired energy density. To make this clear, the inherent problems of dissolution/deposition mechanism of conventional sulfur cathodes are analyzed from the viewpoint of polarization theory of porous electrode after a brief overview of the recent research progress on sulfur cathodes of Li-S batteries, and the possible strategies for building an electrochemically stable sulfur cathode are discussed for practically viable Li-S batteries from the authors' own understandings.

2.
Sci Bull (Beijing) ; 68(17): 1894-1903, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544880

RESUMO

Fe-based polyanionic sulfate materials are one of the most promising candidates for large-scale applications in sodium-ion batteries due to their low cost and excellent electrochemical performance. Although great achievements have been gained on a series of Na6-2xFex(SO4)3 (NFSO-x, 1.5 ≤ x ≤ 2.0) materials such as Na2Fe2(SO4)3, Na2Fe1.5(SO4)3, and Na2.4Fe1.8(SO4)3 for sodium storage, the phase and structure characteristics on these NFSO-x are still controversial, making it difficult to achieve phase-pure materials with optimal electrochemical properties. Herein, six NFSO-x samples with varied x are investigated via both experimental methods and density functional theory calculations to analyze the phase and structure properties. It reveals that a pure phase exists in the 1.6 ≤ x ≤ 1.7 region of the NFSO-x, and part of Na ions tend to occupy Fe sites to form more stable frameworks. The NFSO-1.7 exhibits the best electrochemical performance among the NFSO-x samples, delivering a high discharge capacity (104.5 mAh g-1 at 0.1 C, close to its theoretical capacity of 105 mAh g-1), excellent rate performance (81.5 mAh g-1 at 30 C), and remarkable cycle stability over 10,000 cycles with high-capacity retention of 72.4%. We believe that the results are useful to clarify the phase and structure characteristics of polyanionic materials to promote their application for large-scale energy storage.

3.
Eur J Med Chem ; 257: 115512, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37253309

RESUMO

A series of peptidomimetic compounds containing benzothiazolyl ketone and [2.2.1] azabicyclic ring was designed, synthesized and evaluated in the hope of obtaining potent oral 3CLpro inhibitors with improved pharmacokinetic properties. Among the target compounds, 11b had the best enzymatic potency (IC50 = 0.110 µM) and 11e had the best microsomal stability (t1/2 > 120 min) and good enzyme activity (IC50 = 0.868 µM). Therefore, compounds 11b and 11e were chosen for further evaluation of pharmacokinetics in ICR mice. The results exhibited that the AUC(0-t) of 11e was 5143 h*ng/mL following single-dose oral administration of 20 mg/kg, and the F was 67.98%. Further structural modification was made to obtain compounds 11g-11j based on 11e. Among them, 11j exhibited the best enzyme inhibition activity against SARS-CoV-2 3CLpro (IC50 = 1.646 µM), the AUC(0-t) was 32473 h*ng/mL (20 mg/kg, po), and the F was 48.1%. In addition, 11j displayed significant anti-SARS-CoV-2 activity (EC50 = 0.18 µM) and low cytotoxicity (CC50 > 50 µM) in Vero E6 cells. All of the above results suggested that compound 11j was a promising lead compound in the development of oral 3CLpro inhibitors and deserved further research.


Assuntos
COVID-19 , Peptidomiméticos , Animais , Camundongos , Peptidomiméticos/farmacologia , Peptidomiméticos/química , SARS-CoV-2 , Inibidores de Proteases/química , Cetonas , Camundongos Endogâmicos ICR , Antivirais/química
4.
Bioorg Med Chem ; 87: 117316, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37187077

RESUMO

In this paper, a series of peptidomimetic SARS-CoV-2 3CL protease inhibitors with new P2 and P4 positions were synthesized and evaluated. Among these compounds, 1a and 2b exhibited obvious 3CLpro inhibitory activities with IC50 of 18.06 nM and 22.42 nM, respectively. 1a and 2b also showed excellent antiviral activities against SARS-CoV-2 in vitro with EC50 of 313.0 nM and 170.2 nM, respectively, the antiviral activities of 1a and 2b were 2- and 4-fold better than that of nirmatrelvir, respectively. In vitro studies revealed that these two compounds had no significant cytotoxicity. Further metabolic stability tests and pharmacokinetic studies showed that the metabolic stability of 1a and 2b in liver microsomes was significantly improved, and 2b had similar pharmacokinetic parameters to that of nirmatrelvir in mice.


Assuntos
COVID-19 , Peptidomiméticos , Animais , Camundongos , Inibidores de Proteases/farmacologia , Peptidomiméticos/farmacologia , SARS-CoV-2 , Nitrilas , Antivirais/farmacologia
5.
ACS Appl Mater Interfaces ; 14(38): 43387-43396, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36098664

RESUMO

Sodium metal is a promising anode for high-energy-density sodium rechargeable batteries (RSBs). However, the low Coulombic efficiency (CE) of the Na plating/stripping process and the problem of safety hinder their practical application. Herein, we report a facile strategy for employing the fluorinated phosphate solvents to realize highly reversible Na plating/stripping and improve the safety performance. The fluorinated phosphate molecules reduce the polarity of the solvent and lower the coordination number to Na+, which makes it possible to form the anion-induced ion-solvent-coordinated (AI-ISC) structures with high reduction tolerance. Moreover, the fluorination treatment enhances the oxidation resistance of the phosphate solvent, enabling compatibility with the high-voltage Na3V2(PO4)2F3 (NVPF) cathode. As expected, the Na@Al//NVPF full cell with the as-prepared 0.9 M NaFSI/tris(2,2,2-trifluoroethyl) phosphate (TFEP) demonstrates a capacity retention of 83.4% after 200 cycles with an average CE of 99.6%. This work opens a new avenue for designing high-energy-density RSBs with improved safety performance.

6.
Bioorg Med Chem Lett ; 64: 128682, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35304225

RESUMO

In this paper, a series of artemisinin derivatives were synthesized and evaluated. Studies have shown that IFN-γ produced by Th1 CD4+ T cells and IL-17A secreted by Th17 CD4+ T cells played critical roles in the treatment of multiple sclerosis. We used different concentrations of artemisinin derivatives to inhibit Th1 / Th17 differentiation in naive CD4+ T cells and to characterize IFN-γ / IL-17A in in vitro experiments. The preliminary screening results showed that ester compound 5 exhibited obvious inhibitory activities on Th1 and Th17 (IFN-γ decreased from 41% to 3% and IL-17A decreased from 24% to 8% at the concentration of 10 nM to 10 µM), and carbamate compounds also had obvious inhibitory activities against Th17 at high concentration. Moreover, we investigated the effect of compound 5 on myelin oligodendrocyte glycoprotein (MOG)-induced mice experimental autoimmune encephalomyelitis (EAE) model in vivo. 100 mg/kg compound 5 effectively reduced the disease severity of EAE compared with the vehicle group. This research revealed that compound 5 could be a promising avenue as potential MS inhibitor.


Assuntos
Artemisininas , Encefalomielite Autoimune Experimental , Animais , Artemisininas/farmacologia , Citocinas , Encefalomielite Autoimune Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Células Th1 , Células Th17
7.
Nano Lett ; 22(7): 2956-2963, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35285225

RESUMO

Ion intercalation assisted exfoliation is the oldest and most popular method for the scalable synthesis of molybdenum disulfide (MoS2) nanosheets. The commonly used organolithium reagents for Li+ intercalation are n-butyllithium (n-BuLi) and naphthalenide lithium (Nap-Li); however, the highly pyrophoric nature of n-BuLi and the overly reducing power of Nap-Li hinder their extensive application. Here, a novel organolithium reagent, pyrene lithium (Py-Li), which has intrinsic safe properties and a well-matched redox potential, is reported for the intercalation and exfoliation of MoS2. The redox potential of Py-Li (0.86 V vs Li+/Li) is located just between the intercalation (1.13 V) and decomposition (0.55 V) potentials of bulk MoS2, thus allowing precise Li+ intercalation to form a lamellar LiMoS2 compound without undesirable structural damage. The lithiation reaction can be accomplished within 1 h at room temperature and the exfoliated nanosheets are almost single layer. This method also offers the advantages of low cost, high repeatability, and ease in realizing large-scale production.

8.
Small ; 18(10): e2106144, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35038220

RESUMO

Solid phase conversion sulfur cathode is an effective strategy for eliminating soluble polysulfide intermediates (LiPSs) and improving cyclability of Li-S batteries. However, realizing such a sulfur cathode with high sulfur loading and high capacity utilization is very challenging due to the insulating nature of sulfur. In this work, a strategy is proposed for fabricating solid phase conversion sulfur cathode by encapsulating sulfur in the mesoporous channels of CMK-3 carbon to form a coaxially assembled sulfur/carbon (CA-S/C) composite. Vinyl carbonate (VC) is simultaneously utilized as the electrolyte cosolvent to in-situ form a dense solid electrolyte interface (SEI) on the CA-S/C composite surface through its nucleophilic reaction with the freshly generated polysulfides at the beginning of initial discharge, thus separating the direct contact of interior sulfur with the outer electrolyte. As expected, such a CA-S/C cathode can operate in a solid phase conversion manner in the VC-ether cosolvent electrolyte to exhibit a full capacity utilization (1667 mA h g-1 , ≈100%), a high rate capability of 2.0 A g-1 and excellent long-term cyclability over 500 cycles even at a high sulfur loading (75%, based on the weight of CA-S/C composite), demonstrating great promise for constructing high-energy-density and cycle-stable Li-S batteries.

9.
Chem Sci ; 12(26): 9037-9041, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34276932

RESUMO

Many organic solvents have very desirable solution properties, such as wide temperature range, high solubility of Li salts and nonflammability, and should be able but fail in reality to serve as electrolyte solvents for Li-ion or -metal batteries due to their reduction instability. The origin of this interfacial instability remains unsolved and disputed so far. Here, we reveal for the first time the origin of the reduction stability of organic carbonate electrolytes by combining ab initio molecular dynamics (AIMD) simulations, density functional theory (DFT) calculations and electrochemical stability experiments. It is found that with the increase of the molar ratio (MR) of salt to solvent, the anion progressively enters into the solvation shell of Li+ to form an anion-induced ion-solvent-coordinated (AI-ISC) structure, leading to a "V-shaped" change of the LUMO energy level of coordinated solvent molecules, whose interfacial stability first decreases and then increases with the increased MRs of salt to solvent. This mechanism perfectly explains the long-standing puzzle about the interfacial compatibility of organic electrolytes with Li or similar low potential anodes and provides a basic understanding and new insights into the rational design of the advanced electrolytes for next generation lithium secondary batteries.

10.
Small ; 17(34): e2102248, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34278719

RESUMO

Hard carbons are actively developed as a promising anode material for sodium ion batteries (SIBs). However, their sodium storage mechanism is poorly understood, leading to difficulties in design and development of high-performance hard carbon anode materials. In this work, hollow carbon spheres (HCSs) with different shell thickness as a model material to investigate the correlation between the microstructural change and resulting Na+ storage behavior during charge/discharge cycles are designed and synthesized. Ex situ X-ray diffraction and Raman evidences reveal that an interlayer spacing change of the graphitic nanodomains occurs in HCS electrode, leading to a shift of the reversible capacity from the high-potential sloping (HPS) region to the low-potential plateau (LPP) region. This unusual capacity shift suggests a microstructure-dependent Na+ storage reaction on the HCS electrode and can be well explained by "adsorption-intercalation" mechanism for these HCS materials. This work strengthens the understanding of the sodium storage behavior and provides a new perspective for the morphological and structural design of hard carbon anode materials for high-performance SIBs.

11.
ACS Appl Mater Interfaces ; 13(19): 22505-22513, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33957038

RESUMO

Si is being actively developed as one of the most promising high-capacity anodes for next-generation lithium-ion batteries (LIBs). However, low cycling coulombic efficiency (CE) due to the repetitive growth of the solid electrolyte interphase (SEI) film is still an issue for its application in full batteries. Here, we propose a strategy to in situ form an artificial solid electrolyte interphase (ASEI) on the ferrosilicon/carbon (FeSi/C) anode surface by a purposely designed nucleophilic reaction of polysulfides with vinylene carbonate (VC) and fluoroethylene carbonate (FEC) molecules. The as-formed ASEI layer is mechanically dense and ionically conducting and therefore can effectively prevent the electrolyte infiltration and decomposition while allowing Li+ transport across, thus stabilizing the interface of the FeSi/C anode. As a result, the ASEI-modified FeSi/C anode exhibits a large reversible capacity of 1409.4 mA h g-1, an excellent cycling stability over 650 cycles, and a greatly elevated cycling CE of 99.8%, possibly serving as a high-capacity anode of LIBs.

12.
ACS Appl Mater Interfaces ; 13(16): 18914-18922, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33861567

RESUMO

Hard carbon (HC) has been actively investigated as a high-capacity and low-cost anode material for sodium-ion batteries (SIBs); however, its sodium-storage mechanism has remained controversial, which imposes great difficulties in the design and construction of better microstructured HC materials. To obtain a deeper understanding of the Na-storage mechanism, we comparatively investigated electrochemical behaviors of HC and graphite for Na- and Li-storage reactions. The experimental results reveal that the Na-storage reaction on HC at a low-potential plateau proceeds in a manner similar to the Li+-insertion reaction on graphite but very differently from the Li+-storage process on HC, suggesting that the Na-storage mechanism of HC at a low-voltage plateau operates through the Na+ intercalation into the graphitic layers for the formation of sodium-graphite intercalation compounds (Na-GICs) and is consistent with the "adsorption-intercalation" mechanism. Our work might provide new insight for designing better HC materials of high-energy density SIBs.

13.
Adv Mater ; 33(16): e2100229, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33733506

RESUMO

Room-temperature (RT) sodium-sulfur (Na-S) batteries hold great promise for large-scale energy storage due to the advantages of high energy density, low cost, and resource abundance. The research progress on RT Na-S batteries, however, has been greatly hindered by the sluggish kinetics of the sulfur redox reactions. Herein, an elaborate multifunctional architecture, consisting of N-doped carbon skeletons and tunable MoS2 sulfiphilic sites, is fabricated via a simple one-pot reaction followed by in situ sulfurization. Beyond the physical confinement and chemical binding of polarized N-doped carbonaceous microflowers, the MoS2 active sites play a key role in catalyzing polysulfide redox reactions, especially the conversion from long-chain Na2 Sn (4 ≤ n ≤ 8) to short-chain Na2 S2 and Na2 S. Significantly, the electrocatalytic activity of MoS2 can be tunable via adjusting the discharge depth. It is remarkable that the sodiated MoS2 exhibits much stronger binding energy and electrocatalytic behavior compared to MoS2 sites, effectively enhancing the formation of the final Na2 S product. Consequently, the S cathode achieves superior electrochemical performance in RT Na-S batteries, delivering a high capacity of 774.2 mAh g-1 after 800 cycles at 0.2 A g-1 , and an ultrahigh capacity retention with a capacity decay rate of only 0.0055% per cycle over 2800 cycles.

14.
ACS Appl Mater Interfaces ; 12(29): 32771-32777, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32584019

RESUMO

The global consumption for lithium hexafluorophosphate (LiPF6) has increased dramatically with the rapid growth of Li-ion batteries (LIBs) for large-scale electric energy storage applications. Conventional LiPF6 production has a high cost and high energy consumption due to complicated separation and purification processes. Here, based on the electrode materials of LiMn2O4 and polyaniline (PANI), we propose a facile electrochemical extraction/release process for LiPF6 electrolyte production. This new technology consists of two independent steps: a PF6-- and Li+-extracting step using a PANI/LixMn2O4 cell in aqueous solution (an ion extraction step) and a LiPF6 electrolyte production step from the charged LiMn2O4/PANI+PF6- cell in an organic electrolyte (an ion release step). This new process can effectively avoid the contamination of HF residue in the final product, providing a great possibility to create a facile, energy-efficient, and low-cost LiPF6 electrolyte production.

15.
ACS Appl Mater Interfaces ; 12(27): 30503-30509, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32543169

RESUMO

Si is being intensively developed as a safe and high-performance anode for next-generation Li-ion batteries (LIBs); however, its battery application still remains challenging because of its low cycling Coulombic efficiency. To address this issue, we chose a conjugated polymer, polynaphthalene, as a carbon precursor and a low-cost commercial ferrosilicon (Fe-Si) alloy as the active phase to prepare a Fe-Si/C nanocomposite with a core-shell-like architecture through sand milling-assisted covalent-bonding method, followed by a carbonization reaction, thus forming a covalently bonded carbon coating on the surfaces of Fe-Si alloy nanoparticles. Benefitting from the greatly reduced volumetric expansion of Fe-Si alloy cores in the lithiation process and the stable interface provided by the outer carbon shell, the thus-prepared Fe-Si/C nanocomposite exhibits a high structural stability in repeated charge/discharge cycles. The experimental results reveal that the Fe-Si/C composite anode can demonstrate a high reversible capacity of 1316.2 mA h g-1 with an active mass utilization of 82.6%, a long-term cycle stability of more than 1000 cycles even at a considerably high current rate of 2.0 A g-1, and, in particular, a high cycling Coulombic efficiency of 99.7%, showing great prospect for application in practical LIBs.

16.
Chem Commun (Camb) ; 56(48): 6559-6562, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32396155

RESUMO

We develop a new type of electrolyte with a high molar ratio (MR) of salt to solvent but a low molar concentration by adjusting the molar mass of the solvent. The present 1 : 2 LiFSI-triamyl phosphate electrolyte exhibits a low molar concentration of only 1.35 M along with excellent electrochemical stability against the graphite anode.

17.
Small ; 16(20): e2000745, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32329571

RESUMO

Iron sulfides with high theoretical capacity and low cost have attracted extensive attention as anode materials for sodium ion batteries. However, the inferior electrical conductivity and devastating volume change and interface instability have largely hindered their practical electrochemical properties. Here, ultrathin amorphous TiO2 layer is constructed on the surface of a metal-organic framework derived porous Fe7 S8 /C electrode via a facile atomic layer deposition strategy. By virtue of the porous structure and enhanced conductivity of the Fe7 S8 /C, the electroactive TiO2 layer is expected to effectively improve the electrode interface stability and structure integrity of the electrode. As a result, the TiO2 -modified Fe7 S8 /C anode exhibits significant performance improvement for sodium-ion batteries. The optimal TiO2 -modified Fe7 S8 /C electrode delivers reversible capacity of 423.3 mA h g-1 after 200 cycles with high capacity retention of 75.3% at 0.2 C. Meanwhile, the TiO2 coating is conducive to construct favorable solid electrolyte interphase, leading to much enhanced initial Coulombic efficiency from 66.9% to 72.3%. The remarkable improvement suggests that the interphase modification holds great promise for high-performance metal sulfide-based anode materials for sodium-ion batteries.

18.
ACS Appl Mater Interfaces ; 12(15): 17620-17627, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32208636

RESUMO

Hard carbon (HC) is an attractive anode material for low-cost and high-energy density sodium-ion batteries (SIBs); however, its low initial Coulombic efficiency (ICE) limits its practical battery application. To overcome this problem, we reported a facile strategy to compensate the irreversible capacity loss of HC anodes simply by a chemical presodiation reaction of the HC electrode with a sodiation reagent (sodium biphenyl, Na-Bp). Benefiting from the strong sodiation ability of Na-Bp, HC anodes can be presodiated rapidly in a very short time and the presodiated HC (NaxHC) is found to have a desirable ICE of 100%. When coupled with the Na3V2(PO4)3 cathode to build a SIB full cell, the NaxHC||Na3V2(PO4)3 cell exhibits a high ICE of ∼95.0% and an elevated energy density of 218 W h kg-1, which are far superior to those of the control cell using a pristine HC anode (50% ICE and 120 W h kg-1, respectively), suggesting great advantages brought about by the chemical presodiation process. More importantly, this presodiation reaction is very mild and highly efficient and can be widely extended to a variety of Na-storage materials, offering a new route to develop high-performance Na-storage materials for practical battery applications.

19.
ACS Appl Mater Interfaces ; 12(14): 16411-16416, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32186361

RESUMO

Carbon coating is a popular strategy to boost the cyclability of Si anodes for Li-ion batteries. However, most of the Si/C nanocomposite anodes fail to achieve stable cycling due to the easy separation and peeling off of the carbon layer from the Si surface during extended cycles. To overcome this problem, we develop a covalent modification strategy by chemically bonding a large conjugated polymer, poly-peri-naphthalene (PPN), on the surfaces of nano-Si particles through a mechanochemical method, followed by a carbonization reaction to convert the PPN polymer into carbon, thus forming a Si/C composite with a carbon coating layer tightly bonded on the Si surface. Due to the strong covalent bonding interaction of the Si surface with the PPN-derived carbon coating layer, the Si/C composite can keep its structural integrity and provide an effective surface protection during the fluctuating volume changes of the nano-Si cores. As a consequence, the thus-prepared Si/C composite anode demonstrates a reversible capacity of 1512.6 mA h g-1, a stable cyclability over 500 cycles with a capacity retention of 74.2%, and a high cycling Coulombic efficiency of 99.5%, providing a novel insight for designing highly cyclable silicon anodes for new-generation Li-ion batteries.

20.
Small ; 16(7): e1907602, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31990451

RESUMO

Hard carbons (HC) have potential high capacities and power capability, prospectively serving as an alternative anode material for Li-ion batteries (LIB). However, their low initial coulombic efficiency (ICE) and the resulting poor cyclability hinder their practical applications. Herein, a facile and effective approach is developed to prelithiate hard carbons by a spontaneous chemical reaction with lithium naphthalenide (Li-Naph). Due to the mild reactivity and strong lithiation ability of Li-Naph, HC anode can be prelithiated rapidly in a few minutes and controllably to a desirable level by tuning the reaction time. The as-formed prelithiated hard carbon (pHC) has a thinner, denser, and more robust solid electrolyte interface layer consisting of uniformly distributed LiF, thus demonstrating a very high ICE, high power, and stable cyclability. When paired with the current commercial LiCoO2 and LiFePO4 cathodes, the assembled pHC/LiCoO2 and pHC/LiFePO4 full cells exhibit a high ICE of >95.0% and a nearly 100% utilization of electrode-active materials, confirming a practical application of pHC for a new generation of high capacity and high power LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...