Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Anim Sci ; 6(4): txac144, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36425846

RESUMO

This study evaluated the effects of novel silage inoculants containing lactic acid bacteria (LAB) and fibrolytic enzymes on ensiling, aerobic stability (AS), and the performance of growing beef cattle. Whole-plant corn forage was either uninoculated (CON) or inoculated with a mixture of LAB containing (cfu g-1 fresh forage) 1.5 × 105 L. hilgardii (CNCM I-4785), 1.5 × 105 L. buchneri (NCIMB 40788) and 1.0 × 105 P. pentosaceus (NCIMB 12455) for a total of 4.0 × 105 cfu g-1 fresh forage LAB (IB), or a combination of IB plus fibrolytic enzymes (xylanase + ß-glucanase) (IC). All treatments were ensiled in mini-silos, whereas CON and IC were also ensiled in silo bags for the growth performance study. Total bacteria (TB) counts were lower (P = 0.02) for IC than CON after 14 d of ensiling, whereas TB counts of IC and IB were greater (P ≤ 0.01) than CON after 60 d of ensiling in mini-silos. The LAB in IC and IB ensiled in mini-silos were greater than CON on d 60 (P ≤ 0.01) and 90 (P ≤ 0.001) of ensiling and after 3 d (P ≤ 0.01) of aerobic exposure (AE). Silage pH of IC ensiled in silo bags was lower than CON on d 3 (P < 0.01), 7 (P < 0.001), and 14 (P = 0.02) of AE. Yeast counts were lower for IC than CON in terminal silage (P < 0.001), and after 3 (P < 0.001) and 7 d (P < 0.01) of AE. Acetate (AC) concentrations were higher (P ≤ 0.02) for IC than CON throughout AE, whereas lactate (LA) concentrations of IC were greater than CON on d 3 (P < 0.001), 7 (P < 0.01), and 14 (P < 0.001) of AE. Greater AC concentration and lower yeast counts resulted in greater (P < 0.001) stability for IC ensiled in silo bags than CON after 14 d of AE. Growth performance of steers was similar (P > 0.05) as the nutrient composition of silage was similar across diets. Improved AS of IC could potentially have a greater impact on DMI, production efficiency, and growth performance in large-scale commercial feedlot operations where silage at the silo face may be exposed to air for longer periods of time.

2.
Anim Biosci ; 34(4): 584-593, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32777891

RESUMO

OBJECTIVE: The objective of this study was to compare fenugreek (FG) with alfalfa (Alf) in ruminal fermentation and methane (CH4) production in vitro. METHODS: Whole-plant FG harvested at 11- and 15-wk and Alf harvested at early and mid-bloom maturities, alone or as 50:50 mixture of FG and Alf at the respective maturity, were assessed in a series of 48-h in vitro batch culture incubations. Total fermentation gas and methane gas production, dry matter (DM) disappearance, volatile fatty acids, microbial protein and 16S RNA gene copy numbers of total bacteria and methanogens were determined. RESULTS: Compared to early bloom Alf, FG harvested at 11-wk exhibited higher (p<0.05) in vitro DM and neutral detergent fibre disappearance, but this difference was not observed between the mid-bloom Alf and 15-wk FG. Regardless plant maturity, in vitro ruminal fermentation of FG produced less (p<0.001) CH4 either on DM incubated or on DM disappeared basis than that of Alf during 48-h incubation. In vitro ruminal fermentation of FG yielded similar amount of total volatile fatty acids with higher (p<0.05) propionate percentage as compared to fermentation of Alf irrespective of plant maturity. Microbial protein synthesis was greater (p<0.001) with 11-wk FG than early bloom Alf as substrate and 16S RNA gene copies of total bacteria was higher (p<0.01) with 15-wk FG than mid-bloom Alf as substrate. Compared to mid-bloom Alf, 15-wk FG had lower (p<0.05 to 0.001) amount of 16S RNA methanogen gene copies in the whole culture during 48-h incubation. CONCLUSION: In comparison to Alf, FG emerges as a high quality forage that can not only improve rumen fermentation in vitro, but can also remarkably mitigate CH4 emissions likely due to being rich in saponins.

3.
J Anim Sci ; 98(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32820800

RESUMO

This study evaluated the effects of inoculation of whole crop corn silage with a mixture of heterofermentative lactic acid bacteria (LAB) composed of Lactobacillus hilgardii and Lactobacillus buchneri on ensiling, aerobic stability, ruminal fermentation, total tract nutrient digestibility, and growth performance of beef cattle. Uninoculated control corn silage (CON) and silage inoculated with 3.0 × 105 cfu g-1 of LAB containing 1.5 × 105 cfu g-1 of L. hilgardii CNCM I-4785 and 1.5 × 105 cfu g-1 of L. buchneri NCIMB 40788 (INOC) were ensiled in silo bags. The pH did not differ (P > 0.05) between the two silages during ensiling but was greater (P < 0.001) for CON than INOC after 14 d of aerobic exposure (AE). Neutral detergent insoluble crude protein (NDICP) content (% of DM and % of CP basis) of terminal INOC silage was greater (P ≤ 0.05) than that of CON. In terminal silage, concentrations of total VFA and acetate were greater (P < 0.001), while water-soluble carbohydrates were lower (P < 0.001) for INOC than CON. Yeast and mold counts were lower for INOC than CON (P ≤ 0.001) in both terminal and aerobically exposed silages. The stability of INOC was greater (P < 0.001) than that of CON after 14 d of AE. Ruminal fermentation parameters and DMI did not differ (P > 0.05) between heifers fed the two silages, while there was a tendency (P ≤ 0.07) for lower CP and starch digestibility for heifers fed INOC than CON. Total nitrogen (N) intake and N retention were lower (P ≤ 0.04) for heifers fed INOC than CON. Dry matter intake as a percentage of BW was lower (P < 0.04) and there was a tendency for improved feed efficieny (G:F; P = 0.07) in steers fed INOC vs. CON silage. The NEm and NEg contents were greater for INOC than CON diets. Results indicate that inoculation with a mixture of L. hilgardii and L. buchneri improved the aerobic stability of corn silage. Improvements in G:F of growing steers fed INOC silage even though the total tract digestibility of CP and starch tended to be lower for heifers fed INOC are likely because the difference in BW and growth requirements of these animals impacted the growth performance and nutrient utilization and a greater proportion of NDICP in INOC than CON.


Assuntos
Bovinos/crescimento & desenvolvimento , Lactobacillus/fisiologia , Silagem/análise , Zea mays/microbiologia , Animais , Bovinos/metabolismo , Feminino , Fermentação , Fungos/crescimento & desenvolvimento , Nutrientes/metabolismo , Rúmen/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Silagem/microbiologia , Silagem/normas
4.
J Anim Sci ; 97(12): 4974-4986, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31679029

RESUMO

This study evaluated the effects of a novel silage inoculant containing Saccharomyces cerevisiae strain 3 as a direct fed microbial (DFM) on the ensiling, aerobic stability, and nutrient digestibility of whole-crop corn silage and growth performance of beef cattle. Treatments included uninoculated corn silage (CON) or corn silage inoculated with a mixture of 1.1 × 105 cfu g-1 fresh forage Lactobacillus plantarum and Lactobacillus buchneri (INOC1) or 1.0 × 104 cfu g-1 fresh forage S. cerevisiae strain 3 (INOC2) or a mixture of INOC1 and INOC2 (INOC3). Silage in INOC1 had lower (P = 0.03) proportion of lactate, with acetate (Ac) proportion ranking as INOC1 > INOC3 > INOC2 (P < 0.01). In terminal silage, numbers of lactic acid bacteria were greater (P = 0.05) for INOC1 than CON and INOC2, while yeast counts tended (P = 0.08) to be greater for INOC2 than INOC3 on day 3 of aerobic exposure. Aerobic stability of corn silage was not impacted by inoculation with S. cerevisiae strain 3. Heifers fed INOC2 and INOC3 had lower (P < 0.01) ruminal Ac concentration than those fed CON. Apparent total tract digestibilities of DM, OM, ADF, and NDF were greater (P ≤ 0.03) for heifers fed INOC2 than those fed CON. Growth performance was similar across treatments, excepting DMI as percent of BW tended to be lower (P = 0.08) for INOC2 steers compared to CON steers. These results suggest that S. cerevisiae strain 3 has potential as a component in a fourth generation DFM silage inoculant.


Assuntos
Bovinos/crescimento & desenvolvimento , Lactobacillus , Valor Nutritivo , Saccharomyces cerevisiae , Silagem/análise , Zea mays/metabolismo , Animais , Digestão/fisiologia , Feminino , Fermentação , Nutrientes/metabolismo , Zea mays/microbiologia
5.
Front Microbiol ; 9: 1055, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29887841

RESUMO

Extruded flaxseed (25%) and ground hay (75%) were each fed (DM basis) either together in a total mixed ration (TMR) or as flaxseed first followed by hay (non-TMR) to three pens of eight crossbred steers (n = 24 per diet) for 240 days. Compared to TMR, feeding non-TMR enriched subcutaneous fat with α-linolenic acid (ALA, 18:3n-3) and its biohydrogenation intermediates including vaccenic acid [trans(t)11-18:1], rumenic acid [cis(c)9,t11-conjugated linoleic acid] and conjugated linolenic acid (CLnA). Rumen microbial analysis using QIIME indicated that 14 genera differed (P ≤ 0.05) between TMR and the non-TMR. Azoarcus and Streptococcus were the only genera which increased in relative abundance in the TMR fed steers, whereas Methanimicrococcus, Moryella, Prevotella, Succiniclasticum, Succinivibrio, Suttenella, and TG5 decreased as compared to steers fed the non-TMR. Among these, Moryella, Succiniclasticum, and Succinivibrio, spp. were correlated with fatty acid profiles, specifically intermediates believed to be components of the major biohydrogenation pathway for ALA (i.e., t11, c15-18:2, c9, t11, c15-18:3, and total CLnA). In addition, negative correlations were found between the less abundant Ruminoccocus-like OTU60 and major ALA biohydrogenation intermediates, as well as positive correlations with several intermediates from alternative pathways that did not involve the formation of trans 11 double bonds. The present results suggest a number of pathways for ALA biohydrogenation are operating concurrently in the rumen, with their balance being influenced by diet and driven by less abundant species rather than members of the core bacterial population.

6.
Appl Environ Microbiol ; 84(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29247054

RESUMO

Purple prairie clover (PPC; Dalea purpurea Vent.) containing 84.5 g/kg dry matter (DM) of condensed tannin (CT) was ensiled without (control) or with polyethylene glycol (PEG) for 76 days, followed by 14 days of aerobic exposure. Changes in fermentation characteristics were determined, and the composition of bacterial and fungal communities were assessed using metagenomic sequencing. The addition of polyethylene glycol (PEG) that deactivated CT at ensiling increased (P < 0.05 to ∼0.001) soluble N, nonprotein N, lactic acid, total volatile fatty acids, ammonia N, deoxynivalenol (DON), and ochratoxin A (OTA) but decreased (P < 0.001) pH and water-soluble carbohydrates. The concentrations of DON and OTA increased (P < 0.001) for both silages, with the extent of increase being greater for control than for PEG-treated silage during aerobic exposure. The PEG-treated silage exhibited higher (P < 0.01 to ∼0.001) copy numbers of total bacteria, Lactobacillus, yeasts, and fungi than the control. The addition of PEG decreased (P < 0.01) bacterial diversity during both ensiling and aerobic exposure, whereas it increased (P < 0.05) fungal diversity during aerobic exposure. The addition of PEG at ensiling increased (P < 0.05) the abundances of Lactobacillus and Pediococcus species but decreased (P < 0.01) the abundances of Lactococcus and Leuconostoc species. Filamentous fungi were found in the microbiome at ensiling and after aerobic exposure, whereas Bacillus spp. were the dominate bacteria after aerobic exposure. In conclusion, CT decreased protein degradation and improved the aerobic stability of silage. These desirable outcomes likely reflect the ability of PPC CT to inhibit those microorganisms involved in lowering silage quality and in the production of mycotoxins.IMPORTANCE The present study reports the effects of condensed tannins on the complex microbial communities involved in ensiling and aerobic exposure of purple prairie clover. This study documents the ability of condensed tannins to lower mycotoxin production and the associated microbiome. Taxonomic bacterial community profiles were dominated by Lactobacillales after fermentation, with a notable increase in Bacillus spp. as a result of aerobic exposure. It is interesting to observe that condensed tannins decreased bacterial diversity during both ensiling and aerobic exposure but increased fungal diversity during aerobic exposure only. The present study indicates that the effects of condensed tannins on microbial communities lead to reduced lactic acid and total volatile fatty acid production, proteolysis, and mycotoxin concentration in the terminal silage and improved aerobic stability. Condensed tannins could be used as an additive to control unfavorable microbial development and maybe enhanced feed safety.


Assuntos
Bactérias/metabolismo , Fermentação , Fungos/metabolismo , Micobioma/fisiologia , Micotoxinas/metabolismo , Proantocianidinas/metabolismo , Aerobiose , Silagem/análise
7.
Can J Microbiol ; 62(12): 1063-1067, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27805413

RESUMO

In this study, BODIPY FL DQ™ casein staining combined with fluorescence in situ hybridization (FISH) was used to detect and identify protein-hydrolyzing bacteria within biofilms that produced active cell-surface-associated serine- and metallo-proteases during the ruminal digestion of barley and corn grain in cows fed barley-based diets at 2 different levels. A doublet coccoid bacterial morphotype associated with barley and corn grain particles fluoresced after BODIPY FL DQ™ casein staining. Bacteria with this morphotype accounted for 3%-10% of the total bacteria attached to surface of cereal grain particles, possibly indicative of an important role in the hydrolysis of the protein matrix within the endosperm. However, the identity of these predominant proteolytic bacteria could not be determined using FISH. Quantitative FISH revealed that known proteolytic species, Prevotella ruminicola, Ruminobacter amylophilus, and Butyrivibrio fibrisolvens, were attached to particles of various cultivars of barley grain and corn, confirming their role in the proteolysis of cereal grains. Differences in chemical composition among different barley cultivars did not affect the composition of proteolytic bacterial populations. However, the concentrate level in the basal diet did have an impact on the relative abundance of proteolytic bacteria and thus possibly their overall contribution to the proteolysis of cereal grains.


Assuntos
Bactérias/isolamento & purificação , Bovinos/microbiologia , Hordeum , Rúmen/microbiologia , Zea mays , Ração Animal , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Bovinos/fisiologia , Dieta/veterinária , Digestão , Grão Comestível/metabolismo , Grão Comestível/microbiologia , Feminino , Hordeum/metabolismo , Hordeum/microbiologia , Hidrólise , Hibridização in Situ Fluorescente , Proteólise , Zea mays/metabolismo , Zea mays/microbiologia
8.
PLoS One ; 11(6): e0157539, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27300323

RESUMO

Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers' grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills.


Assuntos
Esterco/microbiologia , Microbiota , Microbiologia do Solo , Resíduos Sólidos , Agricultura , Animais , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Bovinos , Resistência Microbiana a Medicamentos , Fungos/genética , Fungos/isolamento & purificação , Esterco/análise , RNA Ribossômico 16S/genética , Resíduos Sólidos/análise
9.
FEMS Microbiol Ecol ; 91(8): fiv077, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26142428

RESUMO

Cereal grains rich in starch are widely used to meet the energy demands of high-producing beef and dairy cattle. Bacteria are important players in starch digestion in the rumen, and thus play an important role in the hydrolysis and fermentation of cereal grains. However, our understanding of the composition of the rumen starch-hydrolyzing bacteria (SHB) is limited. In this study, BODIPY FL DQ starch staining combined with fluorescence in situ hybridization (FISH) and quantitative FISH were applied to label, identify and quantify SHB possessing active cell-surface-associated (CSA) α-amylase activity in the rumen of heifers fed barley-based diets. When individual cells of SHB with active CSA α-amylase activity were enumerated, they constituted 19-23% of the total bacterial cells attached to particles of four different cultivars of barley grain and corn. Quantitative FISH revealed that up to 70-80% of these SHB were members of Ruminococcaceae in the phylum Firmicutes but were not Streptococcus bovis, Ruminobacter amylophilus, Succinomonas amylolytica, Bifidobacterium spp. or Butyrivibrio fibrisolvens, all of whose amylolytic activities have been demonstrated previously in vitro. The proportion of barley grain in the diet had a large impact on the percentage abundance of total SHB and Ruminococcaceae SHB in these animals.


Assuntos
Ração Animal , Grão Comestível/metabolismo , Rúmen/microbiologia , Ruminococcus/metabolismo , alfa-Amilases/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bovinos , Dieta/veterinária , Digestão , Feminino , Fermentação , Hordeum/metabolismo , Hidrólise , Hibridização in Situ Fluorescente , Ruminococcus/enzimologia , Amido/metabolismo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...