Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Transl Cancer Res ; 13(1): 381-393, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38410211

RESUMO

Background: N6-methyladenosine (m6A) is the most pervasive modification of RNA methylation in eukaryotic cells. m6A modification plays a pivotal role in tumorigenesis and progression in many types of cancers. Until now, the role of m6A modification in esophageal carcinoma (ESCA) has remained obscure. The aim of the study was to construct and validate prognostic signatures based on m6A regulators for ESCA. Methods: Transcriptomic data, somatic mutations and clinical information were obtained from The Cancer Genome Atlas (TCGA). Copy number variations were obtained from the UCSC (University of California, Santa Cruz) Xena database. We curated 21 m6A regulators and performed consensus clustering analysis to quantify the m6A modification pattern. Results: Of the 184 patients, 23 (12.5%) were genetically altered in m6A regulators, with the highest frequency of mutations in ZC3H13 and LRPPRC. We constructed a m6A score system to investigate the prognosis of ESCA. The m6A score was closely related to immune cell infiltration in the tumor immune microenvironment. Patients with a high m6A score had an unfavorable prognosis. The combination of tumor mutation burden and m6A score would improve the prognostic value. Conclusions: Our study established and validated a strong prognostic signature based on m6A regulators. This can be used to accurately predict the prognosis of ESCA.

2.
Protein Expr Purif ; 207: 106267, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37030644

RESUMO

Coronavirus Papain-like protease (PLpro) mediates the cleavage of viral polyproteins and assists the virus escaping from innate immune response. Thus, PLpro is an attractive target for the development of broad-spectrum drugs as it has a conserved structure across different coronaviruses. In this study, we purified SARS-CoV-2 PLpro as an immune antigen, constructed a nanobody phage display library, and identified a set of nanobodies with high affinity for SARS-CoV-2. In addition, enzyme activity experiments demonstrated that two nanobodies had a significant inhibitory effect on the PLpro. These nanobodies should therefore be investigated as candidates for the treatment of coronaviruses.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Humanos , Proteases Semelhantes à Papaína de Coronavírus , SARS-CoV-2 , Peptídeo Hidrolases , Papaína/química
3.
Front Oncol ; 13: 947364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845719

RESUMO

Background: Colon cancer represents one of the most pervasive digestive malignancies worldwide. Translocase of the outer mitochondrial membrane 34 (TOMM34) is considered an oncogene and is implicated in tumor proliferation. However, the correlation between TOMM34 and immune cell infiltration in colon cancer has not been investigated. Materials and methods: Based on multiple open online databases, we performed integrated bioinformatics analysis of TOMM34 to evaluate the prognostic value of TOMM34 and its correlation with immune cell infiltration. Results: TOMM34 gene and protein expression levels were elevated in tumor tissues compared with normal tissues. Survival analysis revealed that upregulation of TOMM34 was significantly associated with poorer survival time in colon cancer. High TOMM34 expression was dramatically related to low levels of B cells, CD8+ T cells, neutrophils, dendritic cells, PD-1, PD-L1 and CTLA-4. Conclusions: Our results confirmed that high expression of TOMM34 in tumor tissue correlates with immune cell infiltration and worse prognosis in colon cancer patients. TOMM34 may serve as a potential prognostic biomarker for colon cancer diagnosis and prognosis prediction.

4.
Entropy (Basel) ; 25(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36673221

RESUMO

We propose a multidimensional reconciliation encoding algorithm based on a field-programmable gate array (FPGA) with variable data throughput that enables quantum key distribution (QKD) systems to be adapted to different throughput requirements. Using the circulatory structure, data flow in the most complex pipeline operation in the same time interval, which enables the structural multiplexing of the algorithm. We handle the calculation and storage of eight-dimensional matrices cleverly to conserve resources and increase data processing speed. In order to obtain the syndrome more efficiently, we designed a simplified algorithm according to the characteristics of the FPGA and parity-check matrix, which omits the unnecessary operation of matrix multiplication. The simplified algorithm could adapt to different rates. We validated the feasibility and high speed of the algorithm by implementing the multidimensional reconciliation encoding algorithm on a Xilinx Virtex-7 FPGA. Our simulation results show that the maximum throughput could reach 4.88 M symbols/s.

5.
ACS Omega ; 4(25): 21178-21186, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31867511

RESUMO

The poor compatibility of an inorganic electron transport layer with the active layer and an ultrathin film organic material becomes a great obstacle in producing high-quality polymer solar cells with high-throughput roll-to-roll (R2R) method. Novel effective polymer solar cells had been fabricated by introducing 1, 7-disubstituted perylene diimide derivatives PDIH, PDIC, and PDIN as an electron transporting layer. It was noteworthy that PDIN could obviously improve the power conversion efficiency of solar cells that incorporated a photoactive layer composed of poly[(3-hexylthiophene)-2, 5-diyl] (P3HT) and the fullerene acceptor [6, 6-phenyl-C71-butyric acid methyl ester] (PC 71 BM). The power conversion efficiency varies from 1.5% for ZnO transparent cathode-based solar cells to 2.1% for PDIN-based electron transport layer-free solar cells. This improved performance could be attributed to the following reasons: the interaction between N atom in PDIN and O atom in indium tin oxide (ITO) reduced the work function of ITO, increased the built-in electric field, and thus lowered the electron transport barrier and improved the electron extraction ability of cathode, the appropriate roughness of the active layer increased the contact area with anode interfacial layer and enhanced the hole transport efficiency. These experimental results revealed that PDIN can be a promising novel effective material with a simplified synthesis process and lower cost as an electron transporting layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...