Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e26081, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384512

RESUMO

MiRNAs are edited or modified in multiple ways during their biogenesis pathways. It was reported that miRNA editing was deregulated in tumors, suggesting the potential value of miRNA editing in cancer classification. Here we extracted three types of miRNA features from 395 LUAD and control samples, including the abundances of original miRNAs, the abundances of edited miRNAs, and the editing levels of miRNA editing sites. Our results show that eight classification algorithms selected generally had better performances on combined features than on the abundances of miRNAs or editing features of miRNAs alone. One feature selection algorithm, i.e., the DFL algorithm, selected only three features, i.e., the frequencies of hsa-miR-135b-5p, hsa-miR-210-3p and hsa-mir-182_48u (an edited miRNA), from 316 training samples. Seven classification algorithms achieved 100% accuracies on these three features for 79 independent testing samples. These results indicate that the additional information of miRNA editing is useful in improving the classification of LUAD samples.

2.
Sci Rep ; 13(1): 15117, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704698

RESUMO

Clear cell renal cell carcinoma (ccRCC) is a malignant tumor originating from the renal tubular epithelium. Although the microRNAs (miRNAs) transcriptome of ccRCC has been extensively studied, the role of miRNAs editing in ccRCC is largely unknown. By analyzing small RNA sequencing profiles of renal tissues of 154 ccRCC patients and 22 normal controls, we identified 1025 miRNA editing sites from 246 pre-miRNAs. There were 122 editing events with significantly different editing levels in ccRCC compared to normal samples, which include two A-to-I editing events in the seed regions of hsa-mir-376a-3p and hsa-mir-376c-3p, respectively, and one C-to-U editing event in the seed region of hsa-mir-29c-3p. After comparing the targets of the original and edited miRNAs, we found that hsa-mir-376a-1_49g, hsa-mir-376c_48g and hsa-mir-29c_59u had many new targets, respectively. Many of these new targets were deregulated in ccRCC, which might be related to the different editing levels of hsa-mir-376a-3p, hsa-mir-376c-3p, hsa-mir-29c-3p in ccRCC compared to normal controls. Our study sheds new light on miRNA editing events and their potential biological functions in ccRCC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , MicroRNAs , Humanos , Carcinoma de Células Renais/genética , MicroRNAs/genética , Epitélio , Neoplasias Renais/genética
3.
Front Mol Biosci ; 9: 1014288, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452459

RESUMO

Leukemia is an aberrant hyper-proliferation of immature blood cells that do not form solid tumors. The transcriptomes of microRNAs (miRNAs) of leukemia have been intensively explored. However, miRNA editing of leukemia has not been extensively studied. To identify miRNA editing patterns and explore their functional relevance in leukemia, we analyzed 200 small RNA sequencing profiles of three subtypes of leukemia and identified hundreds of miRNA editing sites in three subtypes of leukemia. Then, we compared the editing levels of identified miRNA editing sites in leukemia and normal controls. Many miRNAs were differential edited in different subtypes of leukemia. We also found the editing levels of 3'-A editing sites of hsa-mir-21-5p and hsa-mir-155-5p decreased in chronic lymphocytic leukemia patients with radiation treatments. By integrating PAR-CLIP sequencing profiles, we predicted the targets of original and edited miRNAs. One of the edited miRNA, hsa-let-7b_5c, with an additional cytosine at 5' end of hsa-let-7b-5p, potentially targeted VBP1 and CTDSP1. CTDSP1 was significantly downregulated in T-ALL compared to normal controls, which might be originated from the hyperediting of hsa-let-7b-5p in T-ALL. Our study provides a comprehensive view of miRNA editing in three different subtypes of leukemia.

4.
Entropy (Basel) ; 24(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37420352

RESUMO

In order to further improve the information effectiveness of digital image transmission, an image-encryption algorithm based on 2D-Logistic-adjusted-Sine map (2D-LASM) and Discrete Wavelet Transform (DWT) is proposed. First, a dynamic key with plaintext correlation is generated using Message-Digest Algorithm 5 (MD5), and 2D-LASM chaos is generated based on the key to obtain a chaotic pseudo-random sequence. Secondly, we perform DWT on the plaintext image to map the image from the time domain to the frequency domain and decompose the low-frequency (LF) coefficient and high-frequency (HF) coefficient. Then, the chaotic sequence is used to encrypt the LF coefficient with the structure of "confusion-permutation". We perform the permutation operation on HF coefficient, and we reconstruct the image of the processed LF coefficient and HF coefficient to obtain the frequency-domain ciphertext image. Finally, the ciphertext is dynamically diffused using the chaotic sequence to obtain the final ciphertext. Theoretical analysis and simulation experiments show that the algorithm has a large key space and can effectively resist various attacks. Compared with the spatial-domain algorithms, this algorithm has great advantages in terms of computational complexity, security performance, and encryption efficiency. At the same time, it provides better concealment of the encrypted image while ensuring the encryption efficiency compared to existing frequency-domain methods. The successful implementation on the embedded device in the optical network environment verifies the experimental feasibility of this algorithm in the new network application.

5.
Front Mol Neurosci ; 15: 1105278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743290

RESUMO

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder whose pathogenesis is still unclear. MicroRNAs (miRNAs) are a kind of endogenous small non-coding RNAs that play important roles in the post-transcriptional regulation of genes. Recent researches show that miRNAs are edited in multiple ways especially in central nervous systems. A-to-I editing of RNA catalyzed by Adenosine deaminases acting on RNA (ADARs) happens intensively in brain and is also noticed in other organs and tissues. Although miRNAs are widely edited in human brain, miRNA editing in ASD is still largely unexplored. In order to reveal the editing events of miRNAs in ASD, we analyzed 131 miRNA-seq samples from 8 different brain regions of ASD patients and normal controls. We identified 834 editing sites with significant editing levels, of which 70 sites showed significantly different editing levels in the superior frontal gyrus samples of ASD patients (ASD-SFG) when compared with those of control samples. The editing level of an A-to-I editing site in hsa-mir-376a-1 (hsa-mir-376a-1_9_A_g) in ASD-SFG is higher than that of normal controls, and the difference is exaggerated in individuals under 10 years. The increased expression of ADAR1 is consistent with the increased editing level of hsa-mir-376a-1_9_A_g in ASD-SFG samples compared to normal SFG samples. Furthermore, we verify that A-to-I edited hsa-mir-376a-5p directly represses GPR85 and NAPB, which may contribute to the abnormal neuronal development of ASD patients. These results provide new insights into the mechanism of ASD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...