Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 73(5): 394-402, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36912504

RESUMO

Traditional bonded dust suppressants have high viscosity, insufficient fluidity and poor permeability problems, which is adverse to the formation of a continuous and stable solidified layer of dust suppressant solution on the surface of a dust pile. Gemini surfactant has efficient wetting performance and environmental protection performance, it is introduced as a wetting component to improve the flow and penetration performance of bonded dust suppressant solution, polymer absorbent resin (SAP) and sodium carboxymethyl starch (CMS) were selected as the main components of dust suppressant. A proportioning optimization model was constructed based on response surface methodology (RSM), and the concentration of each dust suppression component was selected as the independent variable, water loss rate, moisture retention rate, wind erosion rate and solution viscosity were chosen as the dependent variables in this model. The optimal formulation of the improved bonded dust suppressant was obtained by analyzing the laboratory experiments and field tests data. The results show that the effective time (≥15d) of the newly developed dust suppressant is 45 times longer than that of pure water (≈1/3d), and 1.875 times longer than that of the comparative dust suppressant (8d), the comprehensive cost is 27.36% lower than that of the similar dust suppressant product for mining enterprises.Implications: This paper presents the research idea of optimizing the bonded dust suppressant based on the improvement of wetting performance. And the paper used response surface method to obtain a wetting and bonding composite dust suppressant formulation. The field test shows that the dust suppressant has good dust suppression performance and economic benefits. This study laid the foundation for the development of new and efficient dust suppressants, and had important theoretical and application values for reducing dust environmental hazards and preventing occupational diseases.


Assuntos
Minas de Carvão , Poeira , Poeira/prevenção & controle , Poeira/análise , Vento , Tensoativos , Água
2.
Artigo em Inglês | MEDLINE | ID: mdl-35565025

RESUMO

Chemical dust suppression is an effective dust control technology. A dust suppressant component evaluation method that facilitates a complete selection of safe, efficient, and economical chemical materials has not been explored. Considering dust suppression performance, environmental safety, and cost-effectiveness of chemical dust suppressant technology, this study constructs a comprehensive evaluation index system of chemical dust suppressant performance, including the wetting performance, hygroscopic performance, bonding performance, annual cost per unit area, pH value of dust suppression solution, chemical toxicity, and chemical corrosion. Among them, the index characterizing the wetting performance of the solution is the sedimentation wetting time, which is determined by the dust sedimentation experiment; the index characterizing the hygroscopic performance of the solution is the evaporation stability time, which is determined by the evaporation experiment of the solution on the dust surface; the index to characterize the bonding performance of the solution is the surface wind erosion rate, which is determined by the wind erosion experiment of the solution on the dust surface; the toxicity of the solution is evaluated by the LD50 of the solution; the index to characterize the corrosion performance of the solution is the Q235 monthly steel corrosion rate, which is determined by the Q235 steel corrosion test. Corresponding evaluation parameters are determined including sedimentation wetting time, evaporation stabilization time, surface wind erosion rate; annual average use cost per unit area; solution pH value, chemical acute toxicity classification, monthly corrosion rate of Q235 steel, and corresponding standard test methods are also provided. In order to evaluate the comparability of the results, according to the specific requirements of the evaluation index system and the distribution characteristics of the measurement data, the data of each evaluation and detection index are standardized by linear transformation, range transformation and other methods, so that the obtained results are comparable. Considering the differences in the actual performance requirements of dust suppressants in different usage scenarios, the weights of evaluation indicators at all levels can be set independently and flexible. The experimental test data obtained through the example shows that: among the four chemicals selected to participate in the experiment, the comprehensive dust suppression performance score of Triton X-100 solution is in the poor-grade category. The comprehensive dust suppression performances of calcium chloride solution, water, and polyacrylamide solution scored high in the average-grade category. The comprehensive evaluation process is logically correct, and the results are consistent with the phenomena observed in the experiment, consistent with conventional understanding, and have strong credibility. This method can provide a standardized evaluation technique and test process for the comprehensive performance evaluation and comparison of chemical materials and dust suppressants.


Assuntos
Minas de Carvão , Poeira , Carvão Mineral/análise , Poeira/análise , Aço , Vento
3.
ACS Omega ; 7(51): 47861-47868, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591130

RESUMO

Aiming at the problem of low efficiency of capturing respirable and hydrophobic dust in water mist dust removal technology, a chemical dust suppression method is adopted. Based on the research idea of improving the wetting efficiency of water mist, prolonging the droplet retention time, and improving the contact opportunity with dust, the experiments of dust sedimentation time, solution spreading area, and water loss rate are selected to evaluate the wetting efficiency and anti-evaporation performance of dust suppression water mist. Considering the special double-chain structure of the Gemini surfactant and its high wettability, it is preferred as the main dust suppression component. Based on the indoor experimental data, the optimized formula of the composite wet water mist dust suppressant was obtained by CCD-RSM(central composite design-response surface methodology). The comparison of indoor experimental data shows that the sedimentation time of the dust sample in the water mist dust suppressant is 5.0 times faster than that of pure water, the spreading area of the dust suppressant solution is 1.8 times that of pure water, and the water loss rate of the dust sample treated by the dust suppressant is 70% that of pure water. The field investigation results show that compared with pure water mist, the dust removal rates of the Gemini wetting dust suppressant for respirable dust and total dust are 90.3 and 71.1%, respectively, which are 10.5 and 22.5% higher than that of pure water mist. It can be proved that improving the wetting efficiency and anti-evaporation performance of spray mist will increase the dust removal efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...