Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(32): 21428-21435, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37538025

RESUMO

In the marine environment, Na+ ions have been the focus of attention owing to their high content, which is one of the important factors causing marine corrosion. With reference to the content of macro ions in seawater, circular iron samples were semi-immersed in 0.04 M MgCl2 and 0.6 M NaCl solutions containing different proportions of ethanol. Unexpectedly, we observed more severe corrosion effects in the gas phase region and at the gas-liquid interface of metal samples semi-immersed in the MgCl2 solution. Although the concentration of the MgCl2 solution was only 1/15 of that of the NaCl solution, the iron corrosion induced by MgCl2 was significantly more severe than that caused by NaCl when the ethanol content was increased. Mg2+ ions outperform Na+ ions in metal gas phase corrosion. Especially in the oxygen content of the gas phase corrosion product, MgCl2 caused an increase by up to 52.7%, while NaCl only resulted in a 10.3% increase. Ethanol is normally regarded as a corrosion inhibitor and exists in the liquid phase. Interestingly, in the gas phase and at the gas-liquid interface, ethanol aggravated rather than reducing iron corrosion, particularly in the presence of Mg2+ ions. In addition, we observed that Ca2+ ions produced more severe corrosion effects.

2.
J Colloid Interface Sci ; 648: 102-107, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295361

RESUMO

At ambient conditions, we found salt crystals formed from unsaturated solutions on an iron surface; these salt crystals had abnormal stoichiometries (i.e. Na2Cl and Na3Cl), and these abnormal crystals with Cl:Na of 1/2-1/3 could enhance iron corrosion. Interestingly, we found that the ratio of abnormal crystals, Na2Cl or Na3Cl, with ordinary NaCl was relative to the initial NaCl concentration of the solution. Theoretical calculations suggest that this abnormal crystallisation behaviour is attributed to the different adsorption energy curves between Cl--iron and Na+-iron, which not only promotes Na+ and Cl- adsorbing on the metallic surface to crystallise at unsaturated concentration but also induces the formation of abnormal stoichiometries of Na-Cl crystals for different kinetic adsorptionprocess. These abnormal crystals could also be observed on other metallic surfaces, such as copper. Our findings will help elucidate some fundamental physical and chemical views, including metal corrosion, crystallisation and electrochemical reactions.

3.
STAR Protoc ; 4(2): 102223, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061919

RESUMO

The Fourier transform infrared (FT-IR) signals obtained from bacterial samples are specific and reproducible, making FT-IR an efficient tool for bacterial typing at a subspecies level. However, the typing accuracy could be affected by many factors, including sample preparation and spectral acquisition. Here, we present a unified protocol for bacterial typing based on FT-IR spectroscopy. We describe sample preparation from bacterial culture and FT-IR spectrum collection. We then detail FT-IR spectrum preprocessing and multivariate analysis of spectral data for bacterial typing.

4.
Chemistry ; 29(19): e202203831, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36604309

RESUMO

Photonic disinfection, particularly near-infrared (NIR) light triggered antibacterial, has emerged as a highly promising solution for combating pathogenic microbes due to its spatiotemporal operability, safety, and low cost of apparatus. However, it remains challenging to construct NIR-responsive antibacterial agents with high light-converting efficacy and elucidate synergistic mechanisms. In this work, ultrathin two-dimensional (2D) BiOCl-Bi2 S3 -Cu2 S ternary heterostructures that can efficiently kill drug-resistant bacteria were synthesized by doping 0D Bi2 S3 and Cu2 S nanoparticles in the 2D BiOCl nanosheets via a facile one-pot hydrothermal method. Notably, the incorporation of Cu2 S nanoparticles bestows strong NIR light-harvesting capability to the composite nanosheets due to their localized surface plasmon resonance (LSPR). Upon NIR light illumination, the BiOCl-Bi2 S3 -Cu2 S nanosheets can achieve enhanced photonic hyperthermia and reaction oxygen species (ROS) generation, serving as single light-activated bi-functional photothermal/photodynamic therapeutics. High-speed hot electrons and large local electronic fields caused by LSPR might play an important role in thermal vibrations and effective carrier separations, respectively. Benefiting from the unique ternary heterostructures, both the photothermal conversion and ROS generation efficacy of BiOCl-Bi2 S3 -Cu2 S nanosheets are significantly improved compared to the binary BiOCl-Cu2 S or BiOCl-Bi2 S3 nanosheets. Accordingly, the ternary composite nanosheets can effectively kill bacteria via the NIR-driven photonic disinfection mechanism. This work presents a new type of 2D composite nanosheets with ternary heterostructures for NIR photonic disinfection.


Assuntos
Desinfecção , Nanopartículas , Espécies Reativas de Oxigênio , Ressonância de Plasmônio de Superfície , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias
5.
Colloids Surf B Biointerfaces ; 222: 113106, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36584451

RESUMO

Mitochondria-targeted phototherapy, especially combined photothermal therapy (PTT) and photodynamic therapy (PDT), has been regarded as an attractive strategy for the treatment of tumor. In this study, a facile approach to prepare two-dimensional (2D) BiOCl-Bi2S3 nanostructures was developed, where Bi2S3 quantum dots were doped in/on the ultrathin BiOCl nanosheets, forming a p-n heterojunction. The BiOCl-Bi2S3 shows favorable photothermal conversion efficiency (32%) and synergistically reactive oxygen species (ROS) generating capability under near-infrared (NIR) irradiation. Moreover, the conjugation of synthetic targeting ligand to the surface of BiOCl-Bi2S3 endows the heterojunction effective tumor targeting ability and selective mitochondrial accumulation. The combined cancer targeting ability and synergistic PTT/PDT permit enhanced cooperative phototherapeutic efficiency of the 2D heterojunction. This study provides an attractive way for designing new class of heterostructure materials for potential applications in subcellular-targeted phototherapy.


Assuntos
Nanoestruturas , Neoplasias , Fotoquimioterapia , Humanos , Fototerapia , Neoplasias/patologia , Nanoestruturas/química , Fotoquimioterapia/métodos , Mitocôndrias/patologia
6.
Dalton Trans ; 52(1): 52-57, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36453230

RESUMO

A novel alkynyl-stabilized silver-copper alloy nanocluster with the composition of [Ag13-xCu6+x(tBuC6H4CC)14(PPh3)6](SbF6)3 was prepared by the (PPh3)2CuBH4-mediated reduction approach. The nanocluster features a centred disordered-octahedral Ag7Cu6 kernel, which is protected by hybrid alkynyl and triphenylphosphine ligands. Structural comparison of this two-electron nanocluster with other alkynyl-capped Ag/Cu ones suggested that the structure of alkynyl ligands played an important role in dictating the structures of the resulting nanoclusters. The title cluster showed high performance in the catalytic hydrogenation of 4-nitrophenol, indicative of the bright future of cluster-based catalysts.

7.
Angew Chem Int Ed Engl ; 61(43): e202209751, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36066487

RESUMO

Metal nanoclusters are a unique class of synthetic material, as their crystal structures can be resolved using X-ray diffraction, and their chemical formula can be precisely determinated from mass spectroscopy. However, a complete structure characterization by these two techniques is often a challenging task. Here, we utilize small-angle neutron scattering (SANS) to directly quantify the key structure parameters of a series of silver and gold nanoclusters in solution. The results not only correlate well to their crystallographic structures, but also allow the quantification of the counterions layer surrounding charged nanoclusters in solution. Furthermore, when combining with X-ray scattering, it is possible to estimate the molecular weight of both the metal core and the ligand shell of nanoclusters. This work offers an alternative characterization tool for nanoclusters without the requirement of crystallization or gas phase ionization.

8.
Phys Chem Chem Phys ; 24(22): 13848-13859, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616625

RESUMO

We report distinct molecule-like and lattice (breathing) vibrational signatures of atomically precise, ligand-protected metal clusters using low-temperature Raman spectroscopy. Our measurements provide fingerprint Raman spectra of a series of noble metal clusters, namely, Au25(SR)18, Ag25(SR)18, Ag24Au1(SR)18, Ag29(S2R)12 and Ag44(SR)30 (-SR = alkyl/arylthiolate, -S2R = dithiolate). Distinct, well-defined, low-frequency Raman bands of these clusters result from the vibrations of their metal cores whereas the higher-frequency bands reflect the structure of the metal-ligand interface. We observe a distinct breathing vibrational mode for each of these clusters. Detailed analyses of the bands are presented in the light of DFT calculations. These vibrational signatures change systematically when the metal atoms and/or the ligands are changed. Most importantly, our results show that the physical, lattice dynamics model alone cannot completely describe the vibrational properties of ligand-protected metal clusters. We show that low-frequency Raman spectroscopy is a powerful tool to understand the vibrational dynamics of atomically precise, molecule-like particles of other materials such as molecular nanocarbons, quantum dots, and perovskites.

9.
Int J Biol Macromol ; 206: 175-187, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217087

RESUMO

Infrared (IR) spectroscopy is a highly sensitive technique that provides complete information on chemical compositions. The IR spectra of proteins or peptides give rise to nine characteristic IR absorption bands. The amide I bands are the most prominent and sensitive vibrational bands and widely used to predict protein secondary structures. The interference of H2O absorbance is the greatest challenge for IR protein secondary structure prediction. Much effort has been made to reduce/eliminate the interference of H2O, simplify operation steps, and increase prediction accuracy. Progress in sampling and equipment has rendered the Fourier transform infrared (FTIR) technique suitable for determining the protein secondary structure in broader concentration ranges, greatly simplifying the operating steps. This review highlights the recent progress in sample preparation, data analysis, and equipment development of FTIR in A/T mode, with a focus on recent applications of FTIR spectroscopy in the prediction of protein secondary structure. This review also provides a brief introduction of the progress in ATR-FTIR for predicting protein secondary structure and discusses some combined IR methods, such as AFM-based IR spectroscopy, that are used to analyze protein structural dynamics and protein aggregation.


Assuntos
Peptídeos , Proteínas , Peptídeos/química , Estrutura Secundária de Proteína , Proteínas/química , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
10.
Int J Biol Macromol ; 191: 192-200, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34547310

RESUMO

When nanoparticles (NPs) come into contact with bioenvironments, a protein corona forms on the NP surface. Previous reports showed that the constituents of the corona change with time. However, how different protein corona compositions influence cells, especially immune cells, has received less attention. Macrophages are important immune cells that can be polarized into a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype. In this study, AuNPs were incubated with human plasma for different periods to obtain time-related AuNP-coronas, and the influences of time-related AuNP-coronas on macrophage polarization were investigated. The macrophage morphology, biomarkers, cytokine secretion studies show that the pristine AuNPs and 4 h-AuNP-corona induced macrophage cells into M2 phenotype, while the co-incubation of 12 h-AuNP-corona and macrophage cells result in M1 phenotype. Further proteomic analysis showed that the compositions of protein corona were changing constantly after AuNPs contacted with plasma. When the incubation time increased to 12 h, the immune proteins in protein corona were increased significantly, which play a key role in modulation of the different macrophages polarization. Our findings demonstrated that plasma incubation time is an important parameter that needs to be taken into account in the study of nano-immune interactions and safe use of NPs in biological systems. Moreover, our finding can be a new efficient strategy for activating inflammatory or anti-inflammatory in medical treatment.


Assuntos
Macrófagos/citologia , Nanopartículas Metálicas/química , Coroa de Proteína , Animais , Diferenciação Celular , Citocinas/metabolismo , Ouro/química , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanopartículas Metálicas/efeitos adversos , Camundongos , Células RAW 264.7
11.
ACS Appl Bio Mater ; 4(4): 3214-3223, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35014408

RESUMO

Macrophage cells are plastic and can be polarized into opposing phenotypes, pro-inflammatory (M1-like cells) or anti-inflammatory (M2-like cells). Reprograming of M2-like cells into M1 phenotype will contribute significantly to combatting cancer. Gold nanoparticles (AuNPs) are intensively studied in various fields for their distinctive photo-chemical properties. However, the immune response of AuNPs is still unclear. In this study, AuNPs and CaCO3-encapsulated Au nanoparticles (Au@CaCO3 NPs) were synthesized as stimuli for macrophage modulation. Co-incubation of AuNPs and macrophages leads to a dramatically elongated macrophage cell morphology. Moreover, increased expression of M2 biomarker and M2-inducing cytokines suggests that AuNPs induce macrophage polarization toward M2 phenotype. More interestingly, the co-incubation of Au@CaCO3 NPs and macrophage cells resulted in a round cellular morphology and induced the secretion of M1 biomarker and inflammatory cytokines. Our studies demonstrate that the strategy of CaCO3-encapsulated Au nanoparticles can be used in modulating the polarization of M1 macrophages. Our strategy provides an efficient method for activating inflammation in macrophages, which will be useful for the application of nanoparticles in cancer therapy.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Dióxido de Carbono/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Ouro/farmacologia , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/química , Animais , Anti-Inflamatórios não Esteroides/química , Dióxido de Carbono/química , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Ouro/química , Teste de Materiais , Camundongos , Estrutura Molecular , Tamanho da Partícula , Fenótipo , Células RAW 264.7
12.
Colloids Surf B Biointerfaces ; 196: 111291, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32805591

RESUMO

One of the main diseases contributing to human death are malignant tumors. Phototherapy is a promising approach for cancer therapy, and functional nanoparticles with targeting ligands are commonly used to improve the therapeutic efficiency. However, recent studies have shown that nanoparticles in contact with a biological fluid can rapidly form a "protein corona" on their surface, which will remarkably decrease the targeting ability. Here, we describe the preparation of hybrid nanomaterials with Bi2S3 nanorods as the core, and fluorescein-isothiocyanate and folic acid-modified human serum albumin (HSA-FITC-FA) as the shell. By using fluorescent binding label (FITC) and imaging techniques, we discovered the image of the cell lysosomes, indicating that the photothermal therapy agent was predominantly targeted to and accumulated in lysosomes. Combined with photothermal therapy agent (Bi2S3 nanorods) and targeting ligand (FA), the obtained product shows enhanced photothermal therapy under near-infrared region laser irradiation. Additionally, SDS-PAGE shows that the modified HSA shell could remarkably reduce the reabsorption of protein corona from blood serum, minimized the adverse effect of protein corona on targetability. Taken together, the results indicate that our strategy has the potential for preparing efficient photothermal nanomaterials with image-guided subcellular organelle-targeting cancer cell ablation ability.


Assuntos
Hipertermia Induzida , Nanopartículas , Nanotubos , Neoplasias , Coroa de Proteína , Linhagem Celular Tumoral , Humanos , Lisossomos , Fototerapia
13.
Anal Chim Acta ; 1111: 75-82, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32312399

RESUMO

MALDI-TOF MS is well-recognized for microbial identification and widely used in research and clinical fields due to its specificity, speed of analysis, and low cost of consumables. However, the classification or identification accuracy is poor for E. coli and Shigella. In addition, FTIR is a promising tool for bacterial typing. In this study, 14 strains of E. coli and 9 strains of Shigella were typed by both MALDI-TOF MS and FTIR techniques. Alternatively, a data fusion strategy using these two approaches was attempted to achieve better typing accuracy. Hierarchical clustering analysis (HCA) revealed that the typing accuracies for selected E. coli and Shigella from blood agar were 65.2%, 78.3%, and 100% for MALDI-TOF MS, FTIR, and FTIR combined with MALDI-TOF MS, respectively. Based on these results, a library constructed of the MS-IR fusion data was employed to identify individual bacteria at the strain level, and the library-based typing accuracies for 207 test spectra of sample strains from three different culture media yielded 97.6% accuracy for distinguishing between E. coli and Shigella at genus level. For species level and strain level, it yielded 95.2% and 92.3% typing accuracy, respectively. These results indicate that FTIR is a better technique for typing selected E. coli and Shigella than MALDI-TOF MS, and the accuracy is increased by combining the data from MALDI-TOF MS and FTIR spectroscopy. FTIR could be used to supplement MALDI-TOF MS for the identification and typing of taxonomic microorganisms.


Assuntos
Escherichia coli/isolamento & purificação , Shigella flexneri/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier
14.
ACS Omega ; 5(14): 8219-8229, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32309732

RESUMO

Carbon dots (CDs) have attracted tremendous attention for their outstanding advantages in luminescence. Here, α-amino-substituted lysine derivatives with the determined chemical structure were employed as precursors to obtain bright and highly stable fluorescent CDs through a facile hydrothermal route. The relationships among the chemical structure of precursors, CD fluorescence, and particle size were investigated. The results indicated that increased numbers of functional groups in precursors could promote the degree of cross-linking and lead to a smaller size, better fluorescent properties, and stronger stability of CDs. The C-CDs that were prepared from lysine derivatives with most functional groups showed excitation-dependent dual excitation and dual emission (DE2), high-stability luminescence, strong resistance to photobleaching, and high selectivity to Fe3+ and could be used as a sensitive probe for Fe3+ detection.

15.
Nat Plants ; 6(2): 131-142, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32055045

RESUMO

Self-incompatibility (SI) is an important mechanism that prevents self-fertilization and inbreeding in flowering plants. The most widespread SI system utilizes S ribonucleases (S-RNases) and S-locus F-boxes (SLFs) as S determinants. In citrus, SI is ancestral, and Citrus maxima (pummelo) is self-incompatible, while Citrus reticulata (mandarin) and its hybrids are self-compatible (SC). Here, we identify nine highly polymorphic pistil-specific, developmentally expressed S-RNases from pummelo that segregate with S haplotypes in a gametophytic manner and cluster with authentic S-RNases. We provide evidence that these S-RNases function as the female S determinants in citrus. Moreover, we show that each S-RNase is linked to approximately nine SLFs. In an analysis of 117 citrus SLF and SFL-like (SLFL) genes, we reveal that they cluster into 12 types and that the S-RNases and intra-haplotypic SLF and SLFL genes co-evolved. Our data support the notion that citrus have a S locus comprising a S-RNase and several SLFs that fit the non-self-recognition model. We identify a predominant single nucleotide mutation, Sm-RNase, in SC citrus, which provides a 'natural' loss of function. We show that SI-SC transitions due to the Sm-RNase initially arose in mandarin, spreading to its hybrids and became fixed. Identification of an evolutionarily distant new genus utilizing the S-RNase-based SI system, >100 million years separated from the nearest S-RNase family, is a milestone for evolutionary comparative studies.


Assuntos
Evolução Biológica , Citrus/fisiologia , Mutação , Proteínas de Plantas/genética , Ribonucleases/genética , Citrus/enzimologia , Citrus/genética , Proteínas de Plantas/metabolismo , Reprodução , Ribonucleases/metabolismo
16.
Int J Biol Macromol ; 135: 1114-1122, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31173836

RESUMO

In a physiological fluid (e.g., blood), nanomaterials will strongly interact with proteins to form "protein corona". The structure and aggregation of protein corona around the nanoparticles are of vital importance in the safe application of nanomaterials in living organisms. Here, we combined systematic methods, including transmission electron microscopy, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, hydrogen/deuterium exchange techniques and fluorescence quenching to explore the conformational change, stability and aggregation of protein corona bound on magnetic nanoparticles. For the first time we observed that the conformational change of protein corona could induce proteins to aggregate. We believe that these findings will deepen our understanding of the protein corona.


Assuntos
Agregados Proteicos , Conformação Proteica , Coroa de Proteína/química , Ligação de Hidrogênio , Nanopartículas/química , Nanopartículas/uso terapêutico , Estabilidade Proteica , Soroalbumina Bovina/química , Soroalbumina Bovina/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
17.
J Colloid Interface Sci ; 541: 339-347, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30708249

RESUMO

Herein, our aim is to develop a drug-free method without obvious side effects to treat cancer through biomineralization of biocompatible inorganic nanomaterials targeting onto cells' membrane to block transport proteins. We selected chondroitin sulfate as optimal target agent and linker to induce the in situ biomineralization of exogenous Ca2+ and CO32- at safe concentration to generate biocompatible calcium carbonate (CaCO3) nanostructures targeting onto cancer cells' membrane. The in vitro and in vivo assays indicated that the generated CaCO3 nanostructures could significantly inhibit the proliferation of cancer cells. Mechanism studies demonstrated that the mineralized CaCO3 nanostructures could bind with 66 membrane proteins. Deeply research revealed that the CaCO3 nanostructures could mainly block transport proteins, e.g. sodium/potassium-transporting ATPase, leading to the collapse of the mitochondrial membrane potential and the increase of the lactate dehydrogenase release into medium, and finally modulated cell cycle and induced the apoptosis of cancer cells. Our results may introduce promising possibilities for efficient and specific cancer treatment by producing biocompatible nanomaterials to block transport proteins.


Assuntos
Materiais Biocompatíveis/química , Carbonato de Cálcio/química , Membrana Celular/química , Membrana Celular/metabolismo , Hepatócitos/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Proteínas de Membrana Transportadoras/química , Animais , Antibióticos Antineoplásicos/farmacologia , Adesão Celular , Proliferação de Células , Células Cultivadas , Doxorrubicina/farmacologia , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Ratos
18.
RSC Adv ; 9(8): 4435-4444, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35520163

RESUMO

Nanoparticles (NP) in biological fluids almost invariably become coated with proteins to form protein coronas. It is the NP-protein corona rather than the bare nanoparticle that determines the nanoparticle's bio-behavior. Here, ultrasmall gold nanoparticles (AuNPs) coated by a human serum albumin (HSA) corona were studied by Fourier transform infrared spectroscopy, denature experiments, fluorescence quenching. Moreover, the intracellular fate of AuNPs and the AuNP-HSA corona has also been investigated. The results show that HSA corona undergo a conformational transition (partial ß-sheet changed to α-helicity) when they adsorb on AuNPs, which lead to an enhanced thermal stability. Importantly, we observed that the conformation-transited protein corona-AuNP complex could induce cell apoptosis. Meanwhile, for the first time, the conformation-transited HSA on the AuNPs surface are shown to disrupt living cell membranes. The results obtained here not only provide the detailed conformational behavior of HSA molecules on nanoparticles, but also reveal the structure-function relationship of protein corona, which is of utmost importance in the safe application of nanoscale objects in living organisms.

19.
J Am Chem Soc ; 139(45): 16113-16116, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29053274

RESUMO

A general strategy, using mixed ligands, is utilized to synthesize atomically precise, intrinsically chiral nanocluster [Ag78(DPPP)6(SR)42] (Ag78) where DPPP is the achiral 1,3-bis(diphenyphosphino)propane and SR = SPhCF3. Ag78 crystallizes as racemates in a centric space group. Using chiral diphosphines BDPP = 2,4-bis(diphenylphosphino)pentane, the enantiomeric pair [Ag78(R/S-BDPP)6(SR)42] can be prepared with 100% optical purity. The chiral diphosphines gives rise to, separately, two asymmetric surface coordination motifs composed of tetrahedral R3PAg(SR)3 moieties. The flexible nature of C-C-C angles between the two phosphorus atoms restricts the relative orientation of the tetrahedral R3PAg(SR)3 moieties, thereby resulting in the enantiomeric selection of the intrinsic chiral metal core. This proof-of-concept strategy raises the prospect of enantioselectively synthesizing optically pure, atomically precise chiral noble metal nanoclusters for specific applications.

20.
Inorg Chem ; 56(19): 11470-11479, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28915026

RESUMO

Understanding the nucleation and growth pathways of nanocrystallites allows precise control of the size and shape of functional crystalline nanomaterials of importance in nanoscience and nanotechnology. This paper provides a detailed analysis of the stereochemical and electronic requirements of three series of nanoclusters based on face-centered cubes (fcc) as the basic building blocks, namely, 1-, 2-, and 3-D assemblages of fcc to form superrods (n), supersquares (n2), and supercubes (n3). The generating functions for calculating the numbers (and arrangements) of surface and interior metal atoms, as well as the number and dispositions of the ligands, for these particular sequences of fcc metal clusters of the general formula [Mm(SR)l(PR'3)8]q (where M = coinage metals; SR = thiolates (or group XI ligands), and PR'3 = phosphines) are presented. An electron-counting scheme based on the jelliumatic shell nodel, a variant of the jellium model, predicts the electron requirements and hence the chemical compositions that are critical in the design and synthesis of the next generation of giant nanoclusters in the nanorealm. The ligand binding specificities, which are keys to effective surface ligand control of the size and shape of these nanoclusters, are defined. Finally, a connection is made with regard to the growth of fcc metals, n3, from fcc supercubes (n < 10) to fcc nanocrystallites/particles (10 < n < 102) and to fcc bulk phase (n > 102).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...