Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alcohol Clin Exp Res (Hoboken) ; 48(3): 516-529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38303664

RESUMO

BACKGROUND: A strong relationship exists between individual sensitivity to the aversive properties of ethanol and risk for alcohol use disorder (AUD). Despite this, our understanding of the neurobiological mechanisms underlying the subjective response to ethanol is limited. A major contributor to this lack of knowledge is the absence of preclinical models that enable exploration of this individual variability such as is possible in studies of humans. METHODS: Adult male and female Long-Evans rats were trained to associate a novel tastant (saccharin) with acute exposure to either saline or ethanol (1.5 g/kg or 2.0 g/kg i.p.) over three conditioning days using a standard conditioned taste aversion (CTA) procedure. Variability in sensitivity to ethanol-induced CTA was phenotypically characterized using a median split across the populations studied. RESULTS: When examining group averages, both male and female rats exposed to saccharin paired with either dose of ethanol exhibited lower saccharin intake relative to saline controls indicative of ethanol-induced CTA. Examination of individual data revealed a bimodal distribution of responses uncovering two distinct phenotypes present in both sexes. CTA-sensitive rats exhibited a rapid and progressive reduction in saccharin intake with each successive ethanol pairing. In contrast, saccharin intake was unchanged or maintained after an initial decrease from baseline levels in CTA-resistant rats. While CTA magnitude was similar between male and female CTA-sensitive rats, among CTA-resistant animals females were more resistant to the development of ethanol-induced CTA than males. Phenotypic differences were not driven by differences in baseline saccharin intake. CONCLUSIONS: These data parallel work in humans by revealing individual differences in sensitivity to the aversive properties of ethanol that emerge immediately after initial exposure to ethanol in both sexes. This model can be used in future studies to investigate the neurobiological mechanisms that confer risk for AUD.

2.
Psychopharmacology (Berl) ; 241(6): 1191-1203, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38383904

RESUMO

RATIONALE: Preclinical studies report attenuated ethanol-induced conditioned taste aversion (CTA) following chronic ethanol exposure, suggesting that tolerance develops to the aversive properties of ethanol. However, these studies are confounded by pre-exposure to the unconditioned stimulus (US; ethanol), which is well known to hinder conditioning. OBJECTIVES: This study was designed to determine whether chronic ethanol exposure produces tolerance to the aversive properties of ethanol in the absence of a US pre-exposure confound. METHODS: CTA was performed in adult male and female Long-Evans rats by pairing 0.1% ingested saccharin with an intraperitoneal injection of ethanol (1.5 or 2.0 g/kg) or saline. Rats were then rendered ethanol dependent using chronic intermittent ethanol (CIE) vapor exposure. Controls were exposed to room air (AIR). The effect of chronic ethanol on CTA expression and reconditioning were examined following vapor exposure. RESULTS: Prior to vapor exposure, both sexes developed CTA to a comparable degree with 2.0 g/kg producing greater CTA than 1.5 g/kg ethanol. Following vapor exposure, AIR controls exhibited an increase in CTA magnitude compared to pre-vapor levels. This effect was largely absent in CIE-exposed rats. Re-conditioning after vapor exposure facilitated increased CTA magnitude to a similar degree in AIR- and CIE-exposed males. In contrast, CTA magnitude was unchanged by re-conditioning in females. CONCLUSIONS: These data suggest that chronic ethanol does not facilitate tolerance to the aversive properties of ethanol but rather attenuates incubation of ethanol-induced CTA. Loss of CTA incubation suggests that CIE exposure disrupts circuits encoding aversion.


Assuntos
Aprendizagem da Esquiva , Etanol , Ratos Long-Evans , Sacarina , Paladar , Animais , Masculino , Etanol/administração & dosagem , Etanol/farmacologia , Feminino , Ratos , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Paladar/efeitos dos fármacos , Sacarina/administração & dosagem , Modelos Animais de Doenças , Alcoolismo/fisiopatologia , Relação Dose-Resposta a Droga , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos
3.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745477

RESUMO

Rationale: Preclinical studies report attenuated ethanol-induced conditioned taste aversion (CTA) following chronic ethanol exposure, suggesting that tolerance develops to the aversive properties of ethanol. However, these studies are confounded by pre-exposure to the unconditioned stimulus (US; ethanol), which is well known to hinder conditioning. Objectives: This study was designed to determine whether chronic ethanol exposure produces tolerance to the aversive properties of ethanol in the absence of a US pre-exposure confound. Methods: CTA was performed in adult male and female Long-Evans rats by pairing 0.1% ingested saccharin with an intraperitoneal injection of ethanol (1.5 or 2.0 g/kg) or saline. Rats were then rendered ethanol dependent using chronic intermittent ethanol (CIE) vapor exposure. Controls were exposed to room air (AIR). The effect of chronic ethanol on CTA expression and reconditioning were examined following vapor exposure. Results: Prior to vapor exposure, both sexes developed CTA to a comparable degree with 2.0 g/kg producing greater CTA than 1.5 g/kg ethanol. Following vapor exposure, AIR controls exhibited an increase in CTA magnitude compared to pre-vapor levels. This effect was absent in CIE-exposed rats. These group differences were eliminated upon re-conditioning after vapor exposure. Conclusions: These data suggest that chronic ethanol does not facilitate tolerance to the aversive properties of ethanol but rather, attenuates incubation of ethanol-induced CTA. Loss of CTA incubation suggests that CIE exposure disrupts circuits encoding aversion.

4.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37333122

RESUMO

Background: A strong relationship exists between individual sensitivity to the aversive properties of ethanol and risk for alcohol use disorder (AUD). Despite this, our understanding of the neurobiological mechanisms underlying subjective response to ethanol is relatively poor. A major contributor to this is the absence of preclinical models that enable exploration of this individual variability similar to studies performed in humans. Methods: Adult male and female Long-Evans rats were trained to associate a novel tastant (saccharin) with acute exposure to either saline or ethanol (1.5 g/kg or 2.0 g/kg i.p.) over three conditioning days using a standard conditioned taste aversion (CTA) procedure. Variability in sensitivity to ethanol-induced CTA was phenotypically characterized using a median split across the populations studied. Results: When examining group averages, both male and female rats that had saccharin paired with either dose of ethanol exhibited reduced saccharin intake relative to saline controls of ethanol-induced CTA. Examination of individual data revealed a bimodal distribution of responses uncovering two distinct phenotypes present in both sexes. CTA-sensitive rats exhibited a rapid and progressive reduction in saccharin intake with each successive ethanol pairing. In contrast, saccharin intake was unchanged or maintained after an initial decrease from baseline levels in CTA-resistant rats. While CTA magnitude was similar between male and female CTA-sensitive rats, CTA-resistant females were more resistant to the development of ethanol-induced CTA than their male counterparts. Phenotypic differences were not driven by differences in baseline saccharin intake. CTA sensitivity correlated with behavioral signs of intoxication in only a subset of rats. Conclusions: These data parallel work in humans by revealing individual differences in sensitivity to the aversive properties of ethanol that emerge immediately after initial exposure to ethanol in both sexes. This model can be leveraged in future studies to investigate the neurobiological mechanisms that confer risk for AUD.

5.
Fish Shellfish Immunol ; 131: 939-944, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36356858

RESUMO

Red-spotted grouper (Epinephelus akaara) is a popular aquaculture species with high commercial value in the food industry. However, some infectious diseases may cause mass mortality in cultural practice. Therefore, it is important to understand the immune responses of red-spotted groupers upon pathogenic invasion to develop successful disease prevention mechanisms. Here, we analyzed the transcriptomic profiles of red-spotted grouper head kidney stimulated with lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (poly I:C), and nervous necrosis virus (NNV) and identified differentially expressed genes (DEGs) using RNA-sequencing technology. Cluster analysis of the identified DEGs showed DEG distribution in nine separate clusters based on their expression patterns. However, significant upregulation of most DEGs was observed 6 h after poly I:C stimulation. The DEGs were functionally annotated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, which revealed significant expression of many immune-related signaling pathways, including antiviral, protein translation, cellular protein catabolic process, inflammatory responses, DNA repair, and cell division. Furthermore, selected DEGs were validated by quantitative real-time PCR, confirming the reliability of our findings. Collectively, this study provides insight into the immune responses of red-spotted groupers, thereby expanding the understanding of fish immunity.


Assuntos
Bass , Doenças dos Peixes , Nodaviridae , Infecções por Vírus de RNA , Animais , Lipopolissacarídeos/farmacologia , RNA-Seq , Reprodutibilidade dos Testes , Nodaviridae/fisiologia , Poli I-C/farmacologia , Transcriptoma , Necrose , Proteínas de Peixes
6.
Artigo em Inglês | MEDLINE | ID: mdl-35798276

RESUMO

Caveolin-1 (Cav-1), a major structural component of caveolae, is involved in various biological functions, such as endocytosis, cholesterol trafficking, transcytosis, signal transduction, and immunity. To date, three caveolin members have been identified in mammals: Cav-1, Cav-2, and Cav-3. In this study, we identified the Cav-1 sequence from Amphiprion clarkii (AcCav-1). The protein is 181 amino acids long, with a molecular weight of 20.73 kDa and a predicted isoelectric point of 5.48. The phylogenetic tree disclosed that AcCav-1 is closely related to teleost fish orthologs and clusters together with vertebrates. It shares the highest identity (99.4%) and similarity (100%) with Amphiprion ocellaris. Subcellular localization assays showed that Cav-1 expressed in the endoplasmic reticulum and cytoplasm. Further, AcCav-1 was ubiquitously expressed in all examined tissues, but most highly in the skin and the spleen. The up and downregulation of AcCav-1 was observed throughout the testing period after in-vivo immunostimulation with lipopolysaccharides (LPS), polyinosinic:polycytidylic acid (poly (I:C), and Vibrio harveyi (V. harveyi). The antiviral assay showed that AcCav-1 overexpression suppresses the replication of the viral hemorrhagic septicemia virus (VHSV) in Fathead minnow cells by activating antiviral genes. Further, LPS induced NO production and H2O2-mediated oxidative stress assays showed that AcCav-1 is involved in the regulation of oxidative stress. Collectively, these findings suggest the indispensable role of Cav-1 in the immune system of A.clarkii.


Assuntos
Caveolina 1 , Perciformes , Animais , Antivirais , Caveolina 1/genética , Caveolina 1/metabolismo , Homeostase , Peróxido de Hidrogênio/metabolismo , Lipopolissacarídeos/farmacologia , Mamíferos/metabolismo , Oxirredução , Perciformes/metabolismo , Filogenia , Poli I-C/farmacologia
7.
Fish Shellfish Immunol ; 126: 217-226, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35636699

RESUMO

Interleukin 17D (IL-17D), a pro-inflammatory cytokine, is a signature cytokine of T helper 17 (Th17) cells. However, studies characterizing the functions of IL-17D in teleost are scarce. Therefore, we aimed to characterize the properties of IL-17D in Amphiprion clarkii. We performed spatial and temporal expression, AcIL-17D-mediated antibacterial and inflammatory gene expression, NFκB pathway-related gene expression analyses, and bacterial colony counting and cell protection assays. We found that AcIL-17D contains a 630 bp coding sequence and encodes 210 amino acids. The spatial expression analysis of AcIL-17D in 12 tissues showed ubiquitous expression, with the highest expression in the brain, followed by blood and skin. Temporal expression analysis of AcIL-17D in blood showed upregulated expression at 6 and 24 h (polyinosinic: polycytidylic acid and lipopolysaccharide), 12 h (all stimulants), and 48 h (polyinosinic: polycytidylic acid and Vibrio harveyi). AcIL-17D expression in the blood gradually decreased at later hours in response to all the stimulants. After treatment of fathead minnow (FHM) cells with different recombinant AcIL-17D concentrations, the downstream gene expression analysis showed increased expression of antimicrobial genes in the FHM cells, namely [NK-Lysin (NKL), Hepcidin antimicrobial peptide-1 (HAMP-1), Defensin-ß (DEFB1)] and some inflammatory genes such as IL-1ß, TNF-α, IL-11, and STAT3. Further nuclear factor κB (NFκB) subunits (NFκB1, NFκB2, RelA, and Rel-B) showed upregulated gene expression at 12 and 24 h. The bacterial colony counting assay using FHM cells showed lower bacterial colony counts in rAcIL-17D-treated cells than in control. Furthermore, the Water-Soluble Tetrazolium Salt (WST -1) assay confirmed the ability of rAcIL-17D in the protection of FHM cells from bacterial infection and conducted the Hoechst 33342 staining upon treatment with rAcIL-17D and rMBP. Therefore, our findings provide important insights into the activation of IL-17D pathway genes in FHM cells, the protective role of AcIL-17D against bacterial infection, and host defense mechanisms in teleost.


Assuntos
Cyprinidae , Interleucina-27 , Perciformes , Sequência de Aminoácidos , Animais , Clonagem Molecular , Cyprinidae/genética , Cyprinidae/metabolismo , Cisteína , Citocinas/genética , Interleucina-17/química , Interleucina-27/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Perciformes/genética , Perciformes/metabolismo , Poli C
8.
Fish Shellfish Immunol ; 125: 247-257, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35588907

RESUMO

Apoptosis plays a vital role in maintaining cellular homeostasis in multicellular organisms. Caspase-9 (casp-9) is one of the major initiator caspases that induces apoptosis by activating downstream intrinsic apoptosis pathway genes. Here, we isolated the cDNA sequence (1992 bp) of caspase-9 from Amphiprion clarkii (Accasp-9) that consists of a 1305 bp coding region and encodes a 434 aa protein. In silico analysis showed that Accasp-9 has a theoretical isoelectric point of 5.81 and a molecular weight of 48.45 kDa. Multiple sequence alignment revealed that the CARD domain is located at the N-terminus, whereas the large P-20 and small P-10 domains are located at the C-terminus. Moreover, a highly conserved pentapeptide active site (296QACGG301), as well as histidine and cysteine active sites, are also retained at the C-terminus. In phylogenetic analysis, Accasp-9 formed a clade with casp-9 from different species, distinct from other caspases. Accasp-9 was highly expressed in the gill and intestine compared with other tissues analyzed in healthy A. clarkii. Accasp-9 expression was significantly elevated in the blood after stimulation with Vibrio harveyi and polyinosinic:polycytidylic acid (poly I:C; 12-48 h), but not with lipopolysaccharide. The nucleoprotein expression of the viral hemorrhagic septicemia virus was significantly reduced in Accasp-9 overexpressed fathead minnow (FHM) cells compared with that in the control. In addition, other in vitro assays revealed that cell apoptosis was significantly elevated in poly I:C and UV-B-treated Accasp-9 transfected FHM cells. However, H248P or C298S mutated Accasp-9 significantly reduced apoptosis in UV-B irradiated cells. Collectively, our results show that Accasp-9 might play a defensive role against invading pathogens and UV-B radiation and H248 and C298 active residues are significantly involved in apoptosis in teleosts.


Assuntos
Cyprinidae , Perciformes , Animais , Antivirais , Caspase 3 , Caspase 9 , Filogenia , Poli I-C/farmacologia
9.
Fish Shellfish Immunol ; 124: 391-400, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35462004

RESUMO

In flounder aquaculture, selective breeding plays a vital role in the development of disease-resistant traits and animals with high growth rates. Moreover, superior animals are required to achieve high profits. Unlike growth-related traits, disease-resistant experiments need to be conducted in a controlled environment, as the improper measurement of traits often leads to low genetic correlation and incorrect estimation of breeding values. In this study, viral hemorrhagic septicemia virus (VHSV) resistance was studied using a genome-wide association study (GWAS), and the genetic parameters were estimated. Genotyping was performed using a high-quality 70 K single nucleotide polymorphism (SNP) Affymetrix® Axiom® myDesign™ Genotyping Array of olive flounder. A heritability of ∼0.18 for resistance to VHSV was estimated using genomic information of the fish. According to the GWAS, significant SNPs were detected in chromosomes 21, 24, and contig AGQT02032065.1. Three SNPs showed significance at the genome-wide level (p < 1 × 10-6), while others showed significance above the suggestive cutoff (p < 1 × 10-4). The 3% phenotypic variation was explained by the highest significant SNP, named AX-419319631. Of the important genes for disease resistance, SNPs were associated with plcg1, epha4, clstn2, pik3cb, hes6, meis3, prx6, cep164, siae, and kirrel3b. Most of the genes associated with these SNPs have been previously reported with respect to viral entry, propagation, and immune mechanisms. Therefore, our study provides helpful information regarding VHSV resistance in olive flounder, which can be used for breeding applications.


Assuntos
Doenças dos Peixes , Linguado , Septicemia Hemorrágica Viral , Novirhabdovirus , Animais , Aquicultura , Linguado/genética , Estudo de Associação Genômica Ampla/veterinária , Septicemia Hemorrágica Viral/genética
10.
Fish Shellfish Immunol ; 121: 86-98, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34990805

RESUMO

Galectin-8 is a typical ß-galactoside binding lectin, which primarily functions as a pattern recognition receptor and/or danger receptor that is engaged in pathogen recognition by the host innate immune system. Although several fish galectins have been identified, the role of galectin-8 in teleost immunity is still not fully understood. In this study, molecular, transcriptional, and immune-related functions of galectin-8 (EaGal8) from red-spotted grouper (Epinephelus akaara) were analyzed. The open reading frame of EaGal8 comprised 960 bp encoding 319 amino acids of a ∼35 kDa protein, composed of the N- and C-terminal carbohydrate recognition domains joined by a short hinge peptide. Phylogenetic analysis revealed that EaGal8 was closely related to the Epinephelus lanceolatus galectin-8-like protein. Although EaGal8 showed ubiquitous tissue expression, the highest expression level was observed in the blood. Immunostimulants, including lipopolysaccharide, poly(I:C), and nervous necrosis virus, significantly upregulated the EaGal8 transcription level in a time-dependent manner (p < 0.05). Furthermore, recombinant EaGal8 (rEaGal8) showed a binding affinity toward seven different carbohydrates in a concentration-dependent manner. In addition, rEaGal8 caused strong agglutination of fish red blood cells and several gram-positive and gram-negative bacteria, including Streptococcus iniae, Streptococcus parauberis, Lactococcus garvieae, Escherichia coli, Edwardsiella tarda, Vibrio alginolyticus, Vibrio parahaemolyticus, and Pseudomonas aeruginosa. For the first time in teleosts, we report the wound healing ability of galectin-8 in this study. At low concentrations, rEaGal8 showed potential wound healing responses in FHM cells, in vitro. Thus, this study reinforces the role of EaGal8 in innate immune responses against bacterial and viral infections and wound healing in red-spotted grouper.


Assuntos
Bass , Doenças dos Peixes , Proteínas de Peixes , Galectinas , Sequência de Aminoácidos , Animais , Bass/genética , Bass/imunologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Galectinas/genética , Galectinas/imunologia , Regulação da Expressão Gênica , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Imunidade Inata , Filogenia , Alinhamento de Sequência , Cicatrização
11.
Artigo em Inglês | MEDLINE | ID: mdl-34428552

RESUMO

Interleukin 17C (IL17C) is a cytokine that regulates innate immunity by recruiting antimicrobial peptides and pro-inflammatory cytokines. In this study, we characterized properties of IL-17C from Amphiprion clarkii also known as yellowtail clownfish (AcIL-17C). The AcIL-17C gene is 489 base pairs long and encodes a 163 amino acid long protein. AcIL-17C includes a signal peptide for localization in the extracellular space and comprises the IL-17 domain. The transcription analysis revealed that AcIL-17C mRNA was ubiquitously expressed in 12 tested tissues. Blood cells treated with polyinosinic:polycytidylic acid (poly (I:C)), lipopolysaccharides (LPS), and Vibrio harveyi, AcIL-17C mRNA expression was upregulated at 6 h (following poly (I:C) and LPS treatments) and at 24 h post-injection (following all treatments). The downstream gene analysis of the epithelial fathead minnow (FHM) cells showed upregulated expression of genes, such as FHM_NK-Lysin, FHM_Hepcidin-1, FHM_Defensin-ß, encoding antimicrobial peptides, as well as of FHM_IL-1ß, FHM_TNF-A, FHM_IL-11, and FHM_STAT3 genes encoding inflammation-related proteins and IL-17C receptor genes FHM_IL-17RA, and FHM_IL-17RE at 12 and 24 h after treatment with AcIL-17C. The bacterial colony counting assay showed lower colony counts of Escherichia coli grown on FHM cells transfected with AcIL-17C carrying vector compared to those grown on control FHM cells. Further, AcIL-17C had a concentration-dependent positive effect on the survival of FHM cells infected with E. coli compared to the percentage of survived control cells. There has been a lack of studies characterizing the functions of teleost IL-17C. Therefore, these findings provide important information about the teleost host defense mechanisms and insights on the IL-17C-mediated antibacterial immunity.


Assuntos
Interleucina-17 , Moléculas com Motivos Associados a Patógenos , Animais , Peptídeos Antimicrobianos , Citocinas , Escherichia coli , Interleucina-17/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-34801710

RESUMO

Viperin is known to exhibit activity against RNA viral infection. Viral hemorrhagic septicemia virus (VHSV) is a negative-sense single-stranded RNA virus that causes severe loss in aquaculture species. Susceptible species include redlip mullets (Liza haematocheila), which has become an economically important euryhaline mugilid species in offshore aquaculture along the west coast of Korea. Although interferon-stimulated genes are suspected to act against VHSV, specific pathways or mechanisms of these antiviral actions in redlip mullets have not yet been established. In silico studies of the mullet viperin (Lhrsad2) revealed an S-adenosyl methionine binding conserved domain containing the 77CNYKCGFC84 sequence. In the tissue distribution, the highest levels of lhrsad2 expression were observed in the blood. When injected with poly(I:C), an approximately 17-fold upregulation (compared to the control) of viperin was detected in the blood after 24 h. Furthermore, non-viral immune stimuli, including Lactococcus garvieae (L. garvieae) and lipopolysaccharide (LPS), that were injected into redlip mullets were not found to induce considerable levels of viperin expression. Subcellular analysis revealed that Lhrsad2 localized to the endoplasmic reticulum (ER). To investigate Lhrsad2's antiviral effects against VHSV, cells overexpressing lhrsad2 were infected with VHSV, and then the viral titer and viral gene expression were analyzed. Both assays revealed the potential of Lhrsad2 to significantly reduce VHSV transcription and replication. In brief, the current study illustrates the remarkable ability of viperin to weaken VHSV in redlip mullet.


Assuntos
Novirhabdovirus , Smegmamorpha , Animais , Antivirais/farmacologia , Proteínas de Peixes , Imunidade Inata
13.
Neuropharmacology ; 201: 108836, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34648771

RESUMO

Alcohol use disorder (AUD) constitutes a major burden to global health. Recently, the translational success of animal models of AUD has come under increased scrutiny. Efforts to refine models to gain a more precise understanding of the neurobiology of addiction are warranted. Appetitive responding for ethanol (seeking) and its consumption (taking) are governed by distinct neurobiological mechanisms. However, consumption is often inferred from appetitive responding in operant ethanol self-administration paradigms, preventing identification of distinct experimental effects on seeking and taking. In the present study, male Long-Evans, Wistar, and Sprague-Dawley rats were trained to lever press for ethanol using a lickometer-equipped system that precisely measures both appetitive and consummatory behavior. Three distinct operant phenotypes emerged during training: 1) Drinkers, who lever press and consume ethanol; 2) Responders, who lever press but consume little to no ethanol; and 3) Non-responders, who do not lever press. While the prevalence of each phenotype differed across strains, appetitive and consummatory behavior was similar across strains within each phenotype. Appetitive and consummatory behaviors were significantly correlated in Drinkers, but not Responders. Analysis of drinking microstructure showed that greater consumption in Drinkers relative to Responders is due to increased incentive for ethanol rather than increased palatability. Importantly, withdrawal from chronic ethanol exposure resulted in a significant increase in appetitive responding in both Drinkers and Responders, but only Drinkers exhibited a concomitant increase in ethanol consumption. Together, these data reveal important strain differences in appetitive and consummatory responding for ethanol and uncover the presence of distinct operant phenotypes.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/psicologia , Comportamento Apetitivo/fisiologia , Comportamento Aditivo/psicologia , Comportamento Animal/fisiologia , Condicionamento Operante/fisiologia , Comportamento Consumatório/fisiologia , Comportamento de Procura de Droga/fisiologia , Etanol/administração & dosagem , Fenótipo , Autoadministração/psicologia , Animais , Modelos Animais de Doenças , Masculino , Ratos Long-Evans , Ratos Sprague-Dawley , Ratos Wistar
14.
Fish Shellfish Immunol ; 115: 75-85, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34091036

RESUMO

Thioredoxin domain-containing protein 17 (TXNDC17) is an important, highly conserved oxidoreductase protein, ubiquitously expressed in all living organisms. It is a small (~14 kDa) protein mostly co-expressed with thioredoxin 1 (TRx1). In the present study, we obtained the TXNDC17 gene sequence from a previously constructed yellowtail clownfish (Amphiprion clarkii) (AcTXNDC17) database and studied its phylogeny as well as the protein's molecular characteristics, antioxidant, and antiapoptotic effects. The full length of the AcTXNDC17 cDNA sequence was 862 bp with a 372 bp region encoding a 123 amino acid (aa) protein. The predicted molecular mass and isoelectric point of AcTXNDC17 were 14.2 kDa and 5.75, respectively. AcTXNDC17 contained a TRX-related protein 14 domain and a highly conserved N-terminal Cys43-Pro44-Asp45-Cys46 motif. qPCR analysis revealed that AcTXNDC17 transcripts were ubiquitously and differently expressed in all the examined tissues. AcTXNDC17 expression in the spleen tissue was significantly upregulated in a time-dependent manner upon stimulation with lipopolysaccharide (LPS), polyinosinic-polycytidylic (poly I:C), and Vibrio harveyi. Besides, LPS-induced intrinsic apoptotic pathway (TNF-α, caspase-8, Bid, cytochrome C, caspase-9, and caspase-3) gene expression was significantly lower in AcTXNDC17-overexpressing RAW264.7 cells, as were NF-κB activation and nitric oxide (NO) production. Furthermore, the viability of H2O2-stimulated macrophages was significantly improved under AcTXNDC17 overexpression. Collectively, our findings indicate that AcTXNDC17 is involved in the innate immune response of the yellowtail clownfish.


Assuntos
Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Tiorredoxinas/genética , Tiorredoxinas/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Lipopolissacarídeos/farmacologia , Filogenia , Poli I-C/farmacologia , Alinhamento de Sequência/veterinária , Tiorredoxinas/química , Vibrio/fisiologia , Vibrioses/imunologia
15.
Dev Comp Immunol ; 123: 104168, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34118281

RESUMO

CD63, a member of the tetraspanin family, is involved in the activation of immune cells, antiviral immunity, and signal transduction. The economically important anemonefishes Amphiprion sp. often face disease outbreaks, and the present study aimed to characterize CD63 in Amphiprion clarkii (denoted AcCD63) to enable better disease management. The in-silico analysis revealed that the AcCD63 transcript is 723 bp long and encodes 240 amino acids. The 26.2 kDa protein has a theoretical isoelectric point of 5.51. Similar to other tetraspanins, AcCD63 consists of four domains: short N-/C-terminal domains and small/large extracellular loops. Pairwise sequence alignment revealed that AcCD63 has the highest identity (100%) and similarity (99.2%) with CD63 from Amphiprion ocellaris. Multiple sequence alignment identified a conserved tetraspanin CCG motif, PXSCC motif, and C-terminal lysosome-targeting GYEVM motif. The quantitative polymerase chain reaction analysis showed that AcCD63 was highly expressed in the spleen and head kidney tissue, with low levels of expression in the liver. Temporal expression patterns of AcCD63 were measured in the head kidney and blood tissue after injection of polyinosinic:polycytidylic acid (poly (I:C)), lipolysacharides (LPS), or Vibrio harveyi (V. harveyi). AcCD63 was upregulated at 12 h post-injection with poly (I:C) or V. harveyi, and at 24 h post-injection with all stimulants in the head kidney. At 24 h post-injection, poly (I:C) and LPS upregulated, whereas V. harveyi downregulated AcCD63 expression in the blood. All viral hemorrhagic septicemia virus transcripts (M, G, N, RdRp, P, and NV) were downregulated in response to AcCD63 overexpression, and removal of viral particles occurred via the involvement of AcCD63. The expression of antiviral genes MX dynamin-like GTPase 1, interferon regulatory factor 3, interferon-stimulated gene 15, interferon-gamma, and viperin in CD63-overexpressing fathead minnow cells was downregulated. Collectively, our findings suggest that AcCD63 is an immunologically important gene involved in the A. clarkii pathogen stress response.


Assuntos
Peixes/metabolismo , Rim Cefálico/fisiologia , Novirhabdovirus/fisiologia , Infecções por Rhabdoviridae/imunologia , Tetraspanina 30/metabolismo , Vibrioses/imunologia , Vibrio/fisiologia , Animais , Antivirais/metabolismo , Células Cultivadas , Peixes/genética , Imunidade Inata , Lipopolissacarídeos/imunologia , Poli I-C/imunologia , Domínios Proteicos/genética , Alinhamento de Sequência , Tetraspanina 30/genética
16.
Fish Shellfish Immunol ; 113: 106-117, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33826938

RESUMO

Catalase, a key enzyme in the antioxidant defense grid of organisms, scavenges free radicals to curtail their harmful effects on the host, supporting proper immune function. Herein, we report the identification and characterization of a catalase homolog from Amphiprion clarkii (ClCat), followed by its functional characterization. An open reading frame was identified in the cDNA sequence of ClCat at 1581 bp, which encodes a protein of 527 amino acids (aa) with a molecular mass of 60 kDa. In silico analyses of ClCat revealed characteristic features of the catalase family and a lack of a signal peptide. Multiple sequence alignment of ClCat indicated the conservation of functionally important residues among its homologs. According to phylogenetic analysis, ClCat was of vertebrate origin, positioned within the teleost clade. During native conditions, ClCat mRNA was highly expressed in blood, followed by the liver and kidney. Moreover, significant changes in ClCat transcription were observed after stimulation with LPS, poly I:C, and Vibrio harveyi, in a time-dependent manner. Recombinant ClCat (rClCat) was characterized, and its peroxidase activity was determined. Furthermore, the optimum temperature and pH for rClCat were determined to be 30-40 °C and pH 7, respectively. Oxidative stress tolerance and chromatin condensation assays indicated enhanced cell survival and reduced apoptosis, resulting from reactive oxygen species scavenging by rClCat. The DNA-protective function of rClCat was further confirmed via a metal-catalyzed oxidation assay. Taken together, our findings propose that rClCat plays an essential role in maintaining cellular oxidative homeostasis and host immune protection.


Assuntos
Catalase/imunologia , Doenças dos Peixes/imunologia , Peixes/imunologia , Regulação da Expressão Gênica/genética , Imunidade Inata/genética , Animais , Antioxidantes/fisiologia , DNA/imunologia , Doenças dos Peixes/microbiologia , Regulação da Expressão Gênica/fisiologia , Lipopolissacarídeos/administração & dosagem , Estresse Oxidativo/imunologia , Poli I-C/administração & dosagem , Vibrio/fisiologia , Vibrioses/imunologia , Vibrioses/microbiologia , Vibrioses/veterinária
17.
Gene ; 771: 145350, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33333216

RESUMO

Peroxiredoxins (Prxs) are ubiquitously expressed antioxidant proteins that can protect aerobic organisms from oxidative stress. Here, we characterized the HaPrx3 homolog at the molecular level from big-belly seahorse (Hippocampus abdominalis) and analyzed its functional activities. The coding sequence of HaPrx3 consists of 726 bp, which encodes 241 amino acids. The predicted molecular weight and theoretical isoelectric point (pI) of HaPrx3 was 26.20 kDa and 7.04, respectively. Multiple sequence alignments revealed that the arrangements of domains, catalytic triads, dimers, and decamer interfaces of HaPrx3 were conserved among Prx sequences of other organisms. According to the phylogenetic analysis, HaPrx3 is clustered with the teleost Prx3 subclade. The highest transcript level of HaPrx3 was detected in the ovary tissue among fourteen healthy fish tissues. The mRNA levels of HaPrx3 in blood and liver tissues were significantly (P < 0.05) upregulated in response to lipopolysaccharide (LPS), polyinosinic-polycytidylic (poly I:C), Edwardsiella tarda, and Streptococcus iniae, suggesting its involvement in immune responses. Under functional properties, insulin disulfide reduction assay confirmed the oxidoreductase activity of recombinant HaPrx3. A cell viability assay and Hoechst staining indicated cell survival ability and reduction of apoptotic activity, respectively. Moreover, a peroxidase activity assay verified peroxidase activity, while a metal-catalyzed oxidation (MCO) assay indicated the DNA protection ability of HaPrx3. Collectively, it is concluded that HaPrx3 may play a significant role in oxidative stress and immune responses against pathogenic infections in big-belly seahorses.


Assuntos
Peroxirredoxina III/genética , Peroxirredoxina III/metabolismo , Smegmamorpha/metabolismo , Animais , Sequência Conservada , Evolução Molecular , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/efeitos adversos , Peso Molecular , Ovário/metabolismo , Estresse Oxidativo , Filogenia , Poli I-C/efeitos adversos , Alinhamento de Sequência , Smegmamorpha/genética , Distribuição Tecidual
18.
Fish Shellfish Immunol ; 109: 62-70, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33348035

RESUMO

Glutathione S-transferases (GSTs) are important enzymes involved in phase II detoxification and function by conjugating with the thiol group of glutathione. In this study, we isolated an omega class GST from the big-belly seahorse (Hippocampus abdominalis; HaGSTO1) to study the putative xenobiotic responses and defense ability against viral and bacterial infections in this animal. The isolated HaGSTO1 gene, with a cording sequence of 720 bp, encodes a peptide of 239 amino acids. The predicted molecular mass and theoretical isoelectric point of HaGSTO1 was 27.47 kDa and 8.13, respectively. In-silico analysis of HaGSTO1 revealed a characteristic N-terminal thioredoxin-like domain and a C-terminal domain. Unlike other GSTs, the C-terminal of HaGSTO1 reached up to the N-terminal, and the N-terminal functional group was cysteine rather than tyrosine or serine, as observed in other GSTs. Phylogenetic analysis showed the evolutionary proximity of HaGSTO1 with other identified vertebrate and invertebrate GST orthologs. For the first time, we demonstrated the viral defense capability of HaGSTO1 against viral hemorrhagic septicemia virus (VHSV) infection. All six nucleoproteins of VHSV were significantly downregulated in HaGSTO1-overexpressing FHM cells at 24 h after infection compared with those in the control. Moreover, arsenic toxicity was significantly reduced in HaGSTO1-overexpressing FHM cells, and cell viability increased. Real-time polymerase chain reaction analysis showed that HaGSTO1 transcripts were highly expressed in the pouch and gill when compared with those in other tissues. Blood HaGSTO1 transcripts were significantly upregulated after Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide, and polyinosinic:polycytidylic acid challenge experiments. Collectively, these findings suggest the involvement of HaGSTO1 in the host defense mechanism of seahorses.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Glutationa Transferase/genética , Glutationa Transferase/imunologia , Imunidade Inata/genética , Smegmamorpha/genética , Smegmamorpha/imunologia , Sequência de Aminoácidos , Animais , Feminino , Doenças dos Peixes/virologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Glutationa Transferase/química , Masculino , Novirhabdovirus/fisiologia , Filogenia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/virologia , Alinhamento de Sequência/veterinária
19.
Fish Shellfish Immunol ; 108: 14-23, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33259930

RESUMO

Animal defense system constitutes a series of distinct mechanisms that specifically defend against microbial invasion. Understanding these complex biological mechanisms is of paramount importance for implementing disease prevention strategies. In this study, the transcription factor, Akirin-2 was identified from ornamental fish Amphiprion clarkii and its involvement in immune response was characterized. A. clarkii Akirin-2 (AcAkirin-2) was identified as a highly conserved protein with two nuclear localization signals. In-vitro localization analysis in fathead minnow cells revealed that AcAkirin-2 is strictly localized to the nucleus. With regard to tissue-specific expression without immune challenge, AcAkirin-2 expression was highest in the brain and lowest in the liver. Immune challenge experiments revealed that AcAkirin-2 expression was the strongest in response to poly I:C. Overexpression of AcAkirin-2 alone did not enhanced NF-ĸB activity significantly in HEK293T cells; however, it significantly enhanced NF-ĸB activity in the presence of poly I:C. AcAkirin-2-mediated expression of antiviral genes was analyzed using qPCR in mullet kidney cells and plaque assay was performed to decipher the involvement of AcAkirin-2 in antiviral immunity. AcAkirin-2 overexpression significantly enhanced the expression of Viperin but not of Mx. Plaque assays revealed the ability of AcAkirin-2 to enervate VHSV titers. Taken together, this study unveiled the involvement of AcAkirin-2 in NF-ĸB-mediated transcription of antiviral genes.


Assuntos
Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Sequência de Aminoácidos , Animais , Antivirais/farmacologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , NF-kappa B/metabolismo , Filogenia , Proteínas Repressoras/química , Alinhamento de Sequência/veterinária , Transcriptoma
20.
Dev Comp Immunol ; 114: 103827, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32805308

RESUMO

The thioredoxin domain containing 5 (TXNDC5) is a recently discovered member of the protein disulfide isomerase family (PDI), which is mainly involved in the proper folding of and the correct formation of disulfide bonds in newly synthesized proteins via its disulfide isomerase and chaperone activities. Although the structural and functional features of mammalian TXNDC5 have been explored in previous studies, no studies have reported the functional characteristics of TXNDC5 in teleost fish. In this study, we report the identification and characterization of TXNDC5 from big-belly seahorse (Hippocampus abdominalis) (ShTXNDC5) accompanied by functional studies. The in-silico analysis revealed that the gene encodes a 433 amino acid (aa) long polypeptide chain with a predicted molecular weight of 49.3 kDa. According to homology analysis, ShTXNDC5 shares more than 55% sequence similarity with other teleost TXNDC5 proteins, and the alignment of the gene sequence convincingly reflects the accepted phylogeny of teleost. Analysis of the spatial distribution of ShTXNDC5 expression showed that its highest expression was observed in the ovary, gill, and pouch of seahorses. Moreover, significant upregulation of ShTXNDC5 transcription was noted in seahorse blood and kidney tissues in a time-dependent manner upon viral and bacterial immune challenges. Furthermore, considerable NADPH turnover, insulin reduction ability and significant cell survival effects of ShTXNDC5 were determined by the functional assay, revealing its capability to overcome cellular oxidative stress. Altogether, these findings expand our understanding of TXNDC5 at the molecular and functional levels, and its putative role in seahorse immunity.


Assuntos
Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Proteínas de Peixes/genética , Ovário/metabolismo , Smegmamorpha/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus iniae/fisiologia , Tiorredoxinas/genética , Animais , Células Cultivadas , Dissulfetos , Feminino , Proteínas de Peixes/metabolismo , Imunomodulação , Estresse Oxidativo , Filogenia , Isomerases de Dissulfetos de Proteínas/genética , Alinhamento de Sequência , Tiorredoxinas/metabolismo , Transcriptoma , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...