Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(47): 52937-52951, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33172258

RESUMO

The effect of gallium (Ga) concentration on the structural evolution of atomic-layer-deposited indium gallium oxide (IGO) (In1-xGaxO) films as high-mobility n-channel semiconducting layers was investigated. Different Ga concentrations in 10-13 nm thick In1-xGaxO films allowed versatile phase structures to be amorphous, highly ordered, and randomly oriented crystalline by thermal annealing at either 400 or 700 °C for 1 h. Heavy Ga concentrations above 34 atom % caused a phase transformation from a polycrystalline bixbyite to an amorphous IGO film at 400 °C, while proper Ga concentration produced a highly ordered bixbyite crystal structure at 700 °C. The resulting highly ordered In0.66Ga0.34O film show unexpectedly high carrier mobility (µFE) values of 60.7 ± 1.0 cm2 V-1 s-1, a threshold voltage (VTH) of -0.80 ± 0.05 V, and an ION/OFF ratio of 5.1 × 109 in field-effect transistors (FETs). In contrast, the FETs having polycrystalline In1-xGaxO films with higher In fractions (x = 0.18 and 0.25) showed reasonable µFE values of 40.3 ± 1.6 and 31.5 ± 2.4 cm2 V-1 s-1, VTH of -0.64 ± 0.40 and -0.43 ± 0.06 V, and ION/OFF ratios of 2.5 × 109 and 1.4 × 109, respectively. The resulting superior performance of the In0.66Ga0.34O-film-based FET was attributed to a morphology having fewer grain boundaries, with higher mass densification and lower oxygen vacancy defect density of the bixbyite crystallites. Also, the In0.66Ga0.34O transistor was found to show the most stable behavior against an external gate bias stress.

2.
ACS Appl Mater Interfaces ; 12(30): 33887-33898, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32571011

RESUMO

Low-temperature (≤400 °C), stackable oxide semiconductors are promising as an upper transistor ingredient for monolithic three-dimensional integration. The atomic layer deposition (ALD) route provides a low-defect, high-quality semiconducting oxide channel layer and enables accurate controllability of the chemical composition and physical thickness as well as excellent step coverage on nanoscale trench structures. Here, we report a high-mobility heterojunction transistor in a ternary indium gallium zinc oxide system using the ALD technique. The heterojunction channel structure consists of a 10 nm thick indium gallium oxide (IGO) layer as an effective transporting layer and a 3 nm thick, wide band gap ZnO layer. The formation of a two-dimensional electron gas was suggested by controlling the band gap of the IGO quantum well through In/Ga ratio tailoring and reducing the physical thickness of the ZnO film. A field-effect transistor (FET) with a ZnO/In0.83Ga0.17O1.5 heterojunction channel exhibited the highest field-effect mobility of 63.2 ± 0.26 cm2/V s, a low subthreshold gate swing of 0.26 ± 0.03 V/dec, a threshold voltage of -0.84 ± 0.85 V, and an ION/OFF ratio of 9 × 108. This surpasses the performance (carrier mobility of ∼41.7 ± 1.43 cm2/V s) of an FET with a single In0.83Ga0.17O1.5 channel. Furthermore, the gate bias stressing test results indicate that FETs with a ZnO/In1-xGaxO1.5 (x = 0.25 and 0.17) heterojunction channel are much more stable than those with a single In1-xGaxO1.5 (x = 0.35, 0.25, and 0.17) channel. Relevant discussion is given in detail on the basis of chemical characterization and technological computer-aided design simulation.

3.
Angew Chem Int Ed Engl ; 56(18): 5007-5011, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28371060

RESUMO

C-H activation is a versatile tool for appending aryl groups to aromatic systems. However, heavy demands on multiple catalytic cycle operations and site-selectivity have limited its use for graphene segment synthesis. A Pd-catal- yzed one-step synthesis of functionalized triphenylene frameworks is disclosed, which proceeds by 2- or 4-fold C-H arylation of unactivated benzene derivatives. A Pd2 (dibenzylideneacetone)3 catalytic system, using cyclic diaryliodonium salts as π-extending agents, leads to site-selective inter- and intramolecular tandem arylation sequences. Moreover, N-substituted triphenylenes are applied to a field-effect transistor sensor for rapid, sensitive, and reversible alcohol vapor detection.

4.
Bioconjug Chem ; 27(9): 2007-13, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27504746

RESUMO

Specific recognitions of pathogen associated molecular patterns by Toll-like receptors (TLRs) initiate dendritic cell (DC) activation, which is critical for coordinating innate and adaptive immune responses. Imidazoquinolines as small-molecule TLR7 agonists often suffer from prompt dissemination and short half-life in the bloodstream, preventing their localization to the corresponding receptors and effective DC activation. We postulated that covalent incorporation of imidazoquinoline moieties onto the surface of biocompatible nanoparticles (∼30 nm size) would enhance their chemical stability, cellular uptake efficiency, and adjuvanticity. The fully synthetic adjuvant-nanocomplexes led to successful DC activation at lower nanomolar doses compared with free small-molecule agonists. Once a model antigen such as ovalbumin was used for immunization, we found that the nanocomplexes promoted an unusually strong cytotoxic T lymphocyte response, revealing their unique immunostimulatory capacity benefiting from multivalency and efficient transport to endosomal TLR7.


Assuntos
Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Nanopartículas/química , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Relação Dose-Resposta a Droga
5.
Macromol Biosci ; 14(4): 557-64, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24847525

RESUMO

Genetic and chemical engineering approaches are used to employ P22 viral capsids as nanoplatforms for developing an efficient delivery vehicle. Catechol ligands are chemically attached to the interior surface of P22 viral capsid for subsequent encapsulation of an anticancer drug, bortezomib (BTZ), through boronic acid-diol complexation. For targeted delivery, hepatocellular carcinoma (HCC)-targeting peptide (SP94, SFSIIHTPILPL) is synthesized and chemically conjugated to the exterior surface of the P22 viral capsid nanocomposites. Effective targeted delivery of synthesized P22 viral capsid nanocomposites is demonstrated by fluorescent cell imaging and the efficacy of delivered P22 viral capsid nanocomposites is evaluated using a cell viability assay.


Assuntos
Ácidos Borônicos/administração & dosagem , Proteínas do Capsídeo/química , Sistemas de Liberação de Medicamentos , Nanocompostos/química , Pirazinas/administração & dosagem , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Ácidos Borônicos/química , Bortezomib , Proteínas do Capsídeo/genética , Carcinoma Hepatocelular/tratamento farmacológico , Catecóis/administração & dosagem , Catecóis/química , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Nanocompostos/administração & dosagem , Pirazinas/química
6.
Macromol Biosci ; 14(5): 619-25, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24515582

RESUMO

Carbohydrate-lectin interactions are important in many biological events. Endogenous cell-surface lectins are attractive markers for the recognition and targeting. Human ferritin protein cage nanoparticles (HFPCNs) are prepared as delivery nanoplatforms and two different types of monosaccharide derivatives; maleimido group terminated-mannopyranoside and galactopyranoside. Uniform and polyvalent displays of mannoses or galactoses on the surface of HFPCNs are achieved by using site-specific thiol-maleimide Michael-type addition. Mannose- or galactose-displaying HFPCNs recognize and tightly bind to DC-SIGN or ASGP-R lectins on the surface of the mammalian cells, DCEK or HepG2 cells.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Ferritinas/química , Lectinas/metabolismo , Proteínas de Membrana/metabolismo , Nanopartículas Metálicas/química , Modelos Moleculares , Monossacarídeos/metabolismo , Animais , Linhagem Celular , Cromatografia em Gel , Glicosídeos/síntese química , Humanos , Espectrometria de Massas , Camundongos , Microscopia de Fluorescência , Estrutura Molecular , Monossacarídeos/química , Mutagênese , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...