Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 12(4): 1265-71, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21361274

RESUMO

Cell migration is central to physiological responses to injury and infection and in the design of biomaterial implants. The ability to tune the properties of adhesive materials and relate those properties in a quantitative way to the dynamics of intracellular processes remains a definite challenge in the manipulation of cell migration. Here, we propose the use of poly(vinylmethylsiloxane) (PVMS) networks as novel substrata for cell adhesion and migration. These materials offer the ability to tune independently chemical functionality and elastic modulus. Importantly, PVMS networks are compatible with total internal reflection fluorescence (TIRF) microscopy, which is ideal for interrogating the cell-substratum interface; this latter characteristic presents a distinct advantage over polyacrylamide gels and other materials that swell with water. To demonstrate these capabilities, adhesive peptides containing the arginyl-glycyl-aspartic acid (RGD) tripeptide motif were successfully grafted to the surface of PVMS network using a carboxyl-terminated thiol as a linker. Peptide-specific adhesion, spreading, and random migration of NIH 3T3 mouse fibroblasts were characterized. These experiments show that a peptide containing the synergy sequence of fibronectin (PHSRN) in addition to RGD promotes more productive cell migration without markedly enhancing cell adhesion strength. Using TIRF microscopy, the dynamics of signal transduction through the phosphoinositide 3-kinase pathway were monitored in cells as they migrated on peptide-grafted PVMS surfaces. This approach offers a promising avenue for studies of directed migration and mechanotransduction at the level of intracellular processes.


Assuntos
Adesão Celular , Movimento Celular , Polivinil/química , Siloxanas/química , Sequência de Aminoácidos , Animais , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Células NIH 3T3 , Oligopeptídeos/química
2.
Langmuir ; 22(10): 4660-7, 2006 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-16649779

RESUMO

The nano-phase-separation in mixed polymer brushes consisting of polystyrene and poly(methyl methacrylate) (PS-PMMA) chains attached to a silicon surface is studied. The topographies of the mixed brushes are examined after they have been exposed to solvents which induce or erase nano-phase-separation. It is discussed whether the brush locally forms the same pattern every time the transition from the smooth and featureless to the nanopatterned state occurs ("domain memory") or if the local assembly of the domains emerges in a different arrangement after each cycle of topography switching. A memory measure parameter is introduced, which characterizes quantitatively the domain memory effect in the nanopattern. It is shown that at constant grafting density but with increasing molecular weight of the brush chains the memory measure parameter decreases. In contrast to this, brushes with constant molecular weight, but differing in grafting density, all have a similar domain memory. We discuss a possible origin of the domain memory effect in the mixed brush systems studied and point out its impact on the motion of nanoparticles adsorbed on top of such systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...