Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Plants (Basel) ; 13(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276774

RESUMO

Polyamines and ethylene are key regulators of the growth and development, quality formation, and stress response of cereal crops such as rice. However, it remains unclear whether the application of these regulators could improve the nutritional quality via increasing amino acids in rice grains. This study examined the role of exogenous polyamines and ethylene in regulating amino acid levels in the milled rice of earlier-flowered superior grain (SG) and later-flowered inferior grain (IG). Two rice varieties were field grown, and either 1 mmol L-1 spermidine (Spd) or 50 µmol L-1 amino-ethoxyvinylglycine (AVG) was applied to panicles at the early grain-filling stage. The control check (CK) was applied with deionized water. The results showed that the Spd or AVG applications significantly increased polyamine (spermine (Spm) and Spd) contents and decreased ethylene levels in both SG and IG and significantly increased amino acid levels in the milled rice of SG and IG relative to the CK. Collectively, the application of Spd or AVG can increase amino acid-based nutritional quality and grain yield via increasing polyamine (Spm and Spd) contents and reducing ethylene levels in both SG and IG of rice.

2.
J Exp Bot ; 75(5): 1580-1600, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38035729

RESUMO

Spikelet degeneration in rice (Oryza sativa L.) is a serious physiological defect, and can be regulated by soil moisture status and phytohormones. This study investigated the possibility that brassinosteroids (BRs) in collaboration with abscisic acid (ABA) are involved in mediating the effect of soil drying during meiosis on spikelet degeneration in rice. Three rice cultivars were field grown and three irrigation regimes including well watered (WW), moderate soil drying (MD), and severe soil drying (SD) were imposed during meiosis. MD significantly decreased spikelet degeneration in comparison with WW, due mainly to the alleviation in oxidative damage via enhancing ascorbate-glutathione (AsA-GSH) cycle activity in young panicles, and SD exhibited the opposite effects. Enhanced AsA-GSH cycle strength, decreased oxidative stress, and spikelet degeneration rate were closely associated with the synergistically elevated BR and ABA levels in young panicles in MD. In contrast, low BR and excessive ABA levels led to an increase in spikelet degeneration in SD. The three cultivars exhibited the same tendencies. The intrinsic link among AsA-GSH cycle, oxidative stress, spikelet degeneration rate, and BR and ABA levels was further verified by using transgenic rice lines and chemical regulators. BRs or ABA play a unique role in regulating spikelet degeneration. Synergistically increased BR and ABA levels in MD could work together to strengthen AsA-GSH cycle activity, leading to a reduction in oxidative damage and spikelet degeneration. On the other hand, a severe imbalance between low BR and excessive ABA levels may have contributed to the opposite effects in SD.


Assuntos
Ácido Abscísico , Oryza , Brassinosteroides , Oryza/fisiologia , Solo , Meiose , Água
3.
Plants (Basel) ; 12(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37960079

RESUMO

Salt is harmful to crop production. Therefore, it is important to understand the mechanism of salt tolerance in rice. CIPK genes have various functions, including regulating salt tolerance and other types of stress and nitrogen use efficiency. In rice, OsCIPK24 is known to regulate salt tolerance, but other OsCIPKs could also function in salt tolerance. In this study, we identified another OsCIPK-OsCIPK9-that can regulate salt tolerance. Knockout of OsCIPK9 in rice could improve salt tolerance. Through expression analyses, OsCIPK9 was found to be mainly expressed in the roots and less expressed in mature leaves. Meanwhile, OsCIPK9 had the highest expression 6 h after salt treatment. In addition, we proved the interaction between OsCIPK9 and OsSOS3. The RNA-seq data showed that OsCIPK9 strongly responded to salt treatment, and the transporters related to salt tolerance may be downstream genes of OsCIPK9. Finally, haplotype analyses revealed that Hap6 and Hap8 mainly exist in indica, potentially providing a higher salt tolerance. Overall, a negative regulator of salt tolerance, OsCIPK9, which interacted with OsSOS3 similarly to OsCIPK24 and influenced salt-related transporters, was identified, and editing OsCIPK9 potentially could be helpful for breeding salt-tolerant rice.

4.
Plants (Basel) ; 12(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836098

RESUMO

Rice is a crucial global food crop, but it lacks a natural tolerance to high salt levels, resulting in significant yield reductions. To gain a comprehensive understanding of the molecular mechanisms underlying rice's salt tolerance, further research is required. In this study, the transcriptomic and metabolomic differences between the salt-tolerant rice variety Lianjian5 (TLJIAN) and the salt-sensitive rice variety Huajing5 (HJING) were examined. Transcriptome analysis revealed 1518 differentially expressed genes (DEGs), including 46 previously reported salt-tolerance-related genes. Notably, most of the differentially expressed transcription factors, such as NAC, WRKY, MYB, and EREBP, were upregulated in the salt-tolerant rice. Metabolome analysis identified 42 differentially accumulated metabolites (DAMs) that were upregulated in TLJIAN, including flavonoids, pyrocatechol, lignans, lipids, and trehalose-6-phosphate, whereas the majority of organic acids were downregulated in TLJIAN. The interaction network of 29 differentially expressed transporter genes and 19 upregulated metabolites showed a positive correlation between the upregulated calcium/cation exchange protein genes (OsCCX2 and CCX5_Ath) and ABC transporter gene AB2E_Ath with multiple upregulated DAMs in the salt-tolerant rice variety. Similarly, in the interaction network of differentially expressed transcription factors and 19 upregulated metabolites in TLJIAN, 6 NACs, 13 AP2/ERFs, and the upregulated WRKY transcription factors were positively correlated with 3 flavonoids, 3 lignans, and the lipid oleamide. These results suggested that the combined effects of differentially expressed transcription factors, transporter genes, and DAMs contribute to the enhancement of salt tolerance in TLJIAN. Moreover, this study provides a valuable gene-metabolite network reference for understanding the salt tolerance mechanism in rice.

5.
Plants (Basel) ; 12(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765407

RESUMO

Rice yield and grain quality are highly sensitive to salinity stress. Salt-tolerant/susceptible rice cultivars respond to salinity differently. To explore the variation in grain yield and quality to moderate/severe salinity stress, five rice cultivars differing in degrees of salt tolerance, including three salt-tolerant rice cultivars (Lianjian 5, Lianjian 6, and Lianjian 7) and two salt-susceptible rice cultivars (Wuyunjing 30 and Lianjing 7) were examined. Grain yield was significantly decreased under salinity stress, while the extent of yield loss was lesser in salt-tolerant rice cultivars due to the relatively higher grain filling ratio and grain weight. The milling quality continued to increase with increasing levels. There were genotypic differences in the responses of appearance quality to mild salinity. The appearance quality was first increased and then decreased with increasing levels of salinity stress in salt-tolerant rice but continued to decrease in salt-susceptible rice. Under severe salinity stress, the protein accumulation was increased and the starch content was decreased; the content of short branched-chain of amylopectin was decreased; the crystallinity and stability of the starch were increased, and the gelatinization temperature was increased. These changes resulted in the deterioration of cooking and eating quality of rice under severe salinity-stressed environments. However, salt-tolerant and salt-susceptible rice cultivars responded differently to moderate salinity stress in cooking and eating quality and in the physicochemical properties of the starch. For salt-tolerant rice cultivars, the chain length of amylopectin was decreased, the degrees of order of the starch structure were decreased, and pasting properties and thermal properties were increased significantly, whereas for salt-susceptible rice cultivars, cooking and eating quality was deteriorated under moderate salinity stress. In conclusion, the selection of salt-tolerant rice cultivars can effectively maintain the rice production at a relatively high level while simultaneously enhancing grain quality in moderate salinity-stressed environments. Our results demonstrate specific salinity responses among the rice genotypes and the planting of salt-tolerant rice under moderate soil salinity is a solution to ensure rice production in China.

6.
Sci Total Environ ; 896: 165294, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37414171

RESUMO

Significant advancements have been made in understanding the genetic regulation of nitrogen use efficiency (NUE) and identifying crucial NUE genes in rice. However, the development of rice genotypes that simultaneously exhibit high yield and NUE has lagged behind these theoretical advancements. The grain yield, NUE, and greenhouse gas (GHG) emissions of newly-bred rice genotypes under reduced nitrogen application remain largely unknown. To address this knowledge gap, field experiments were conducted, involving 80 indica (14 to 19 rice genotypes each year in Wuxue, Hubei) and 12 japonica (8 to 12 rice genotypes each year in Yangzhou, Jiangsu). Yield, NUE, agronomy, and soil parameters were assessed, and climate data were recorded. The experiments aimed to assess genotypic variations in yield and NUE among these genotypes and to investigate the eco-physiological basis and environmental impacts of coordinating high yield and high NUE. The results showed significant variations in yield and NUE among the genotypes, with 47 genotypes classified as moderate-high yield with high NUE (MHY_HNUE). These genotypes demonstrated the higher yields and NUE levels, with 9.6 t ha-1, 54.4 kg kg-1, 108.1 kg kg-1, and 64 % for yield, NUE for grain and biomass production, and N harvest index, respectively. Nitrogen uptake and tissue concentration were key drivers of the relationship between yield and NUE, particularly N uptake at heading and N concentrations in both straw and grain at maturity. Increase in pre-anthesis temperature consistently lowered yield and NUE. Genotypes within the MHY_HNUE group exhibited higher methane emissions but lower nitrous oxide emissions compared to those in the low to middle yield and NUE group, resulting in a 12.8 % reduction in the yield-scaled greenhouse gas balance. In conclusion, prioritizing crop breeding efforts on yield and resource use efficiency, as well as developing genotypes resilient to high temperatures with lower GHGs, can mitigate planetary warming.


Assuntos
Gases de Efeito Estufa , Oryza , Nitrogênio , Oryza/genética , Fertilizantes/análise , Melhoramento Vegetal , Solo , Agricultura/métodos , Óxido Nitroso/análise , Grão Comestível/química , Genótipo
7.
Plant Cell Environ ; 46(4): 1340-1362, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36097648

RESUMO

This study tested the hypothesis that brassinosteroids (BRs) mediate moderate soil-drying (MD) to alleviate spikelet degeneration under high temperature (HT) stress during meiosis of rice (Oryza sativa L.). A rice cultivar was pot-grown and subjected to normal temperature (NT) and HT treatments during meiosis, and two irrigation regimes including well-watered (WW) and MD were imposed to the plants simultaneously. The MD effectively alleviated the spikelet degeneration and yield loss under HT stress mainly via improving root activity and canopy and panicle traits including higher photosynthetic capacity, tricarboxylic acid cycle activity, and antioxidant capacity than WW. These parameters were regulated by BRs levels in plants. The decrease in BRs levels at HT was due mainly to the enhanced BRs decomposition, and the MD could rescue the BRs deficiency at HT via enhancing BRs biosynthesis and impeding decomposition. The connection between BRs and HT was verified by using rice BRs-deficient mutants, transgenic rice lines, and chemical regulators. Similar results were obtained in the open-air field experiment. The results suggest that BRs can mediate the MD to alleviate spikelet degeneration under HT stress during meiosis mainly via enhancing root activity, canopy traits, and young panicle traits of rice.


Assuntos
Brassinosteroides , Oryza , Brassinosteroides/farmacologia , Temperatura , Solo , Meiose
8.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3364-3372, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38511376

RESUMO

The middle and lower reaches of the Yangtze River is one of main grain production areas in China, which is of great significance to food security. Understanding the carbon footprint of major grain crop production is helpful to develop high-yield and low-carbon agriculture. Based on the data of yield, sown area and farmland production input of main grain crops (rice, wheat and maize) in six provinces (Jiangsu, Anhui, Jiangxi, Hubei, Hunan, and Zhejiang) in the middle and lower reaches of the Yangtze River from 2011 to 2020, we estimated carbon footprint in the production of the three grain crops. The results showed that from 2011 to 2020, yield per unit area, planting area, and total yield of rice, wheat and maize were the highest in Jiangsu Province. In terms of area-scaled carbon footprint, rice in the middle and lower reaches of the Yangtze River had the highest area-scaled carbon footprint, with an average of 2.0 t CE·hm-2, followed by wheat and maize. The area-scaled carbon footprint of the three staple crops was increasing. In terms of yield-scaled carbon footprint, rice was the highest, with an average of 0.8 kg CE·kg-1, followed by wheat and maize. In terms of carbon input structure, irrigation electricity, chemical fertilizers and pesticides accounted for a relatively high proportion. Irrigation electricity accounted for 35.0%, 36.3%, and 33.2% of the total carbon input of rice, wheat and maize, respectively. Chemical fertilizers accounted for 28.8%, 32.5%, and 32.5%, respectively, while pesticides accounted for 24.2%, 13.3% and 11.5%, respectively. In terms of carbon efficiency, maize had the highest (3.9 kg·kg-1 CE), followed by rice and wheat. With the green development of agriculture, carbon emission in the production of major grain crops in the middle and lower reaches of the Yangtze River could be reduced by improving irrigation efficiency, fertilizer utilization efficiency, pesticide utilization efficiency and mechanized operation efficiency, as well as diversification of straw returning, cultivation of new varieties and policy leverage.


Assuntos
Oryza , Praguicidas , Pegada de Carbono , Fertilizantes , Rios , Agricultura/métodos , Produtos Agrícolas , Grão Comestível , China , Zea mays , Triticum , Carbono/análise
9.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430147

RESUMO

The mobilization and translocation of carbohydrates and mineral nutrients from vegetative plant parts to grains are pivotal for grain filling, often involving a whole plant senescence process. Loss of greenness is a hallmark of leaf senescence. However, the relationship between crop yield and senescence has been controversial for many years. Here, in this study, the overexpression and RNA interference lines of gene of OsNYC3 (Non-Yellow Coloring 3), a chlorophyll catabolism gene, were investigated. Furthermore, exogenous phytohormones were applied, and a treatment of alternate wetting and moderate drying (AWMD) was introduced to regulate the processes of leaf senescence. The results indicated that the delayed senescence of the "STAY-GREEN" trait of rice is undesirable for the process of grain filling, and it would cause a lower ratio of grain filling and lower grain weight of inferior grains, because of unused assimilates in the stems and leaves. Through the overexpression of OsNYC3, application of exogenous chemicals of abscisic acid (ABA), and water management of AWMD, leaf photosynthesis was less influenced, a high ratio of carbohydrate assimilates was partitioned to grains other than leaves and stems as labeled by 13C, grain filling was improved, especially for inferior spikelets, and activities of starch-synthesizing enzymes were enhanced. However, application of ethephon not only accelerated leaf senescence, but also caused seed abortion and grain weight reduction. Thus, plant senescence needs to be finely adjusted in order to make a contribution to crop productivity.


Assuntos
Oryza , Oryza/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo
10.
Sci Rep ; 12(1): 11416, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794145

RESUMO

Direct cell reprogramming represents a promising new myocardial regeneration strategy involving in situ transdifferentiation of cardiac fibroblasts into induced cardiomyocytes. Adult human cells are relatively resistant to reprogramming, however, likely because of epigenetic restraints on reprogramming gene activation. We hypothesized that modulation of the epigenetic regulator gene p63 could improve the efficiency of human cell cardio-differentiation. qRT-PCR analysis demonstrated significantly increased expression of a panel of cardiomyocyte marker genes in neonatal rat and adult rat and human cardiac fibroblasts treated with p63 shRNA (shp63) and the cardio-differentiation factors Hand2/Myocardin (H/M) versus treatment with Gata4, Mef2c and Tbx5 (GMT) with or without shp63 (p < 0.001). FACS analysis demonstrated that shp63+ H/M treatment of human cardiac fibroblasts significantly increased the percentage of cells expressing the cardiomyocyte marker cTnT compared to GMT treatment with or without shp63 (14.8% ± 1.4% versus 4.3% ± 1.1% and 3.1% ± 0.98%, respectively; p < 0.001). We further demonstrated that overexpression of the p63-transactivation inhibitory domain (TID) interferes with the physical interaction of p63 with the epigenetic regulator HDAC1 and that human cardiac fibroblasts treated with p63-TID+ H/M demonstrate increased cardiomyocyte marker gene expression compared to cells treated with shp63+ H/M (p < 0.05). Whereas human cardiac fibroblasts treated with GMT alone failed to contract in co-culture experiments, human cardiac fibroblasts treated with shp63+ HM or p63-TID+ H/M demonstrated calcium transients upon electrical stimulation and contractility synchronous with surrounding neonatal cardiomyocytes. These findings demonstrate that p63 silencing provides enhanced rat and human cardiac fibroblast transdifferentiation into induced cardiomyocytes compared to a standard reprogramming strategy. p63-TID overexpression may be a useful reprogramming strategy for overcoming epigenetic barriers to human fibroblast cardio-differentiation.


Assuntos
Miócitos Cardíacos , Proteínas com Domínio T , Animais , Reprogramação Celular , Epigênese Genética , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/genética , Miócitos Cardíacos/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Ratos , Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Plants (Basel) ; 11(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35736731

RESUMO

Rice is one of the most important food crops in the world, and amino acids in rice grains are major nutrition sources for the people in countries where rice is the staple food. Phytohormones and plant growth regulators play vital roles in regulating the biosynthesis of amino acids in plants. This paper reviewed the content and compositions of amino acids and their distribution in different parts of ripe rice grains, and the biosynthesis and metabolism of amino acids and their regulation by polyamines (PAs) and phytohormones in filling grains, with a focus on the roles of higher PAs (spermidine and spermine), ethylene, and brassinosteroids (BRs) in this regulation. Recent studies have shown that higher PAs and BRs (24-epibrassinolide and 28-homobrassinolide) play positive roles in mediating the biosynthesis of amino acids in rice grains, mainly by enhancing the activities of the enzymes involved in amino acid biosynthesis and sucrose-to-starch conversion and maintaining redox homeostasis. In contrast, ethylene may impede amino acid biosynthesis by inhibiting the activities of the enzymes involved in amino acid biosynthesis and elevating reactive oxygen species. Further research is needed to unravel the temporal and spatial distribution characteristics of the content and compositions of amino acids in the filling grain and their relationship with the content and compositions of amino acids in different parts of a ripe grain, to elucidate the cross-talk between or among phytohormones in mediating the anabolism of amino acids, and to establish the regulation techniques for promoting the biosynthesis of amino acids in rice grains.

12.
J Sci Food Agric ; 102(5): 1832-1841, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34460951

RESUMO

BACKGROUND: Applying organic fertilizer coupled with chemical fertilizer has been widely adopted to improve crop productivity and quality and develop sustainable agriculture. However, little information is available about the effects of organic fertilizer on the grain quality of rice (Oryza sativa L.), especially nutritional quality and starch quality. In the present study, high yielding 'super' rice cultivars were grown in the field with three cultivation practices, including zero nitrogen application (0N), local high yielding practice with chemical fertilizer (T1) and T1 treatment with additional organic fertilizer (T2). RESULTS: Application of organic fertilizer synergistically improved rice production, nitrogen use efficiency, milling and appearance quality, and nutritional quality, including the contents of glutelin, essential amino acids and microelements, and also increased amylopectin and the ratio of the short chain of amylopectin, leading to a reduction in relative crystallinity, and decreased prolamin content. Application of organic fertilizer also increased the viscosity and breakdown values, whereas it decreased the pasting temperature and gelatinization enthalpy, resulting in better cooking and eating quality. CONCLUSION: Overall, application of organific fertilizer could synergistically improve nitrogen use efficiency and grain quality, including the structure and physicochemical properties of starch, contents of high value protein and amino acids, contents of microelements, and cooking and eating quality. © 2021 Society of Chemical Industry.


Assuntos
Brassica napus , Oryza , Brassica napus/metabolismo , Produção Agrícola/métodos , Fertilizantes , Nitrogênio/metabolismo , Oryza/química , Amido/química
13.
Sci Total Environ ; 806(Pt 2): 150669, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597563

RESUMO

Ongoing increases in atmospheric carbon dioxide (CO2) are expected to stimulate biomass and yield of plants possessing the C3 photosynthetic pathway; however, the extent of stimulation is likely to vary both intra- and inter-species specifically. Meta-analytic approaches can be applied to decrease variation and uncertainty by delineating and characterizing variation, allowing results to be used in modeling plant responses to elevated [CO2]. However, the use of meta-analysis in this effort could be limited by missing measures of variance, including standard deviations (SDs) of the compiled dataset. Here, we examined whether there were differences in effect sizes of elevated [CO2] on plant growth using various weighting and imputation approaches. Our results showed that the efficacy of different weighting functions and data interpolation methods on meta-analysis outcomes depended on the SDs provided by the studies. Comparing different methodologies for [CO2] fumigation as a case study, if the ratio of missing SD was low, the overall trend of effect values and 95% confidence interval (CI) were not changed. For datasets of greenhouse and growth chamber [CO2] methodologies, which had a high ratio of missing SDs, effect sizes and 95% confidence intervals using different weighing and imputation methods were influenced relative to that of the raw dataset, with reduced effect sizes and broader CI. Overall these results suggest that application of meta-analysis to discern general biological responses could be influenced by the number of missing SDs. As such, efforts should be made to check the proportion of missing SDs of the compiled dataset and if necessary, to apply various weighting functions and imputation methods to fully discern meta-analysis implications. Our findings could improve the assessment of methodological choices for future [CO2] experimentation and discerning long-term trends for agricultural productivity and food security.


Assuntos
Dióxido de Carbono , Desenvolvimento Vegetal , Biomassa , Fotossíntese , Plantas
14.
Plant J ; 109(6): 1457-1472, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34921476

RESUMO

Poor grain filling of inferior spikelets is becoming a severe problem in some super rice varieties with large panicles. Moderate soil drying (MD) after pollination has been proven to be a practical strategy to promote grain filling. However, the molecular mechanisms underlying this phenomenon remain largely unexplored. Here, transcriptomic analysis of the most active grain filling stage revealed that both starch metabolism and phytohormone signaling were significantly promoted by MD treatment, accompanied by increased enzyme activities of starch synthesis and elevated abscisic acid (ABA) and indole-3-acetic acid (IAA) content in the inferior spikelet. Moreover, the IAA biosynthesis genes OsYUC11 and OsTAR2 were upregulated, while OsIAA29 and OsIAA24, which encode two repressors of auxin signaling, were downregulated by MD, implying a regulation of both IAA biosynthesis and auxin signal transduction in the inferior spikelet by MD. A notable improvement in grain filling of the inferior spikelet was found in the aba8ox2 mutant, which is mutated in an ABA catabolism gene. In contrast, overexpression of OsABA8ox2 significantly reduced grain filling. Interestingly, not only the IAA content, but also the expression of IAA biosynthesis and auxin-responsive genes displayed a similar trend to that in the inferior spikelet under MD. In addition, several OsTPP genes were downregulated in the inferior spikelets of both MD/ABA-treated wild-type plants and the aba8ox2 mutant, resulting in lower trehalose content and higher levels of -6-phosphate (T6P), thereby increasing the expression of OsTAR2, a target of T6P. Taken together, our results suggest that the synergistic interaction of ABA-mediated accumulation of IAA promotes grain filling of inferior spikelets under MD.


Assuntos
Oryza , Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Solo
15.
Front Plant Sci ; 13: 1099751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714775

RESUMO

Straw returning plays an essential role in crop yields and the sustainable development of agriculture. However, the effects and mechanisms of nitrogen (N) fertilizer management on grain yield, quality and aroma substance 2-acetyl-1-pyrroline (2-AP) content under wheat straw returning are still unclear. In this field experiment, two japonica rice cultivars were used as materials, wheat straw non-returning (NS) and wheat straw full returning (WS) were designed coupled with two N application ratios, namely basal fertilizer: tiller fertilizer: panicle fertilizer =5:1:4 (local farmers' fertilizer practice, LFP) and 7:1:2 (increasing basal fertilizer rate, IBF) under the total N application rate of 270 kg ha-1. The effects of the four treatment combinations (NS-LFP, NS-IBF, WS-LFP, WS-IBF) on yield, cooking and eating quality, and 2-AP content in rice were investigated. The two-year (2020, 2021) results showed that: 1) WS-IBF significantly increased the number of panicles and grains per panicle, leading to the increase in grain yield by 6.67%-12.21%, when compared with NS-LFP, NS-IBF and WS-LFP. 2) WS-IBF enhanced the taste value, peak viscosity, breakdown value, the ratio of amylopectin to amylose, and the ratio of glutelin to prolamin while reducing the setback value and amylose content of rice flour. 3) Compared with NS, WS increased the activities of proline dehydrogenase and ornithine transaminase, the synthetic precursors of 2-AP, and finally increased 2-AP content in rice grains. WS-IBF slightly decreased 2-AP content, but there was no significant difference with WS-LFP. The above results indicated that adjusting the N regime and increasing basal N fertilizer rate under wheat straw returning is conducive to improving grain yield, cooking and eating quality, and 2-AP content in rice.

16.
J Am Heart Assoc ; 10(24): e022659, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34889103

RESUMO

Background The conversion of fibroblasts into induced cardiomyocytes may regenerate myocardial tissue from cardiac scar through in situ cell transdifferentiation. The efficiency transdifferentiation is low, especially for human cells. We explored the leveraging of Hippo pathway intermediates to enhance induced cardiomyocyte generation. Methods and Results We screened Hippo effectors Yap (yes-associated protein), Taz (transcriptional activator binding domain), and Tead1 (TEA domain transcription factor 1; Td) for their reprogramming efficacy with cardio-differentiating factors Gata4, Mef2C, and Tbx5 (GMT). Td induced nearly 3-fold increased expression of cardiomyocyte marker cTnT (cardiac troponin T) by mouse embryonic and adult rat fibroblasts versus GMT administration alone (P<0.0001), while Yap and Taz failed to enhance cTnT expression. Serial substitution demonstrated that Td replacement of TBX5 induced the greatest cTnT expression enhancement and sarcomere organization in rat fibroblasts treated with all GMT substitutions (GMTd versus GMT: 17±1.2% versus 5.4±0.3%, P<0.0001). Cell contractility (beating) was seen in 6% of GMTd-treated cells by 4 weeks after treatment, whereas no beating GMT-treated cells were observed. Human cardiac fibroblasts likewise demonstrated increased cTnT expression with GMTd versus GMT treatment (7.5±0.3% versus 3.0±0.3%, P<0.01). Mechanistically, GMTd administration increased expression of the trimethylated lysine 4 of histone 3 (H3K4me3) mark at the promoter regions of cardio-differentiation genes and mitochondrial biogenesis regulator genes in rat and human fibroblast, compared with GMT. Conclusions These data suggest that the Hippo pathway intermediate Tead1 is an important regulator of cardiac reprogramming that increases the efficiency of maturate induced cardiomyocytes generation and may be a vital component of human cardiodifferentiation strategies.


Assuntos
Fibroblastos , Via de Sinalização Hippo , Miócitos Cardíacos , Fatores de Transcrição de Domínio TEA , Animais , Transdiferenciação Celular , Fibroblastos/fisiologia , Camundongos , Miócitos Cardíacos/fisiologia , Ratos , Fatores de Transcrição de Domínio TEA/metabolismo
17.
Sci Rep ; 11(1): 22605, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799643

RESUMO

Fibroblast reprogramming offers the potential for myocardial regeneration via in situ cell transdifferentiation. We explored a novel strategy leveraging endothelial cell plasticity to enhance reprogramming efficiency. Rat cardiac endothelial cells and fibroblasts were treated with Gata4, Mef2c, and Tbx5 (GMT) to assess the cardio-differentiation potential of these cells. The endothelial cell transdifferentiation factor ETV2 was transiently over-expressed in fibroblasts followed by GMT treatment to assess "trans-endothelial" cardio-differentiation. Endothelial cells treated with GMT generated more cTnT+ cells than did cardiac fibroblasts (13% ± 2% vs 4% ± 0.5%, p < 0.01). Cardiac fibroblasts treated with ETV2 demonstrated increased endothelial cell markers, and when then treated with GMT yielded greater prevalence of cells expressing cardiomyocyte markers including cTnT than did fibroblasts treated with GMT or ETV2 (10.3% ± 0.2% vs 1.7% ± 0.06% and 0.6 ± 0.03, p < 0.01). Rat cardiac fibroblasts treated with GMT + ETV2 demonstrated calcium transients upon electrical stimulation and contractility synchronous with surrounding neonatal cardiomyocytes, whereas cells treated with GMT or ETV2 alone failed to contract in co-culture experiments. Human cardiac fibroblasts treated with ETV2 and then GMT likewise demonstrated greater prevalence of cTnT expression than did cells treated with GMT alone (2.8-fold increase, p < 0.05). Cardiac fibroblast transitioning through a trans-endothelial state appears to enhance cardio-differentiation by enhancing fibroblast plasticity.


Assuntos
Transdiferenciação Celular , Reprogramação Celular , Endotélio/metabolismo , Fibroblastos/metabolismo , Animais , Animais Recém-Nascidos , Plasticidade Celular , Separação Celular , Técnicas de Cocultura , Células Endoteliais/metabolismo , Citometria de Fluxo , Humanos , Miócitos Cardíacos/metabolismo , Prevalência , Ratos
18.
Front Plant Sci ; 12: 634959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854518

RESUMO

Using photothermosensitive genic male sterile (PTSGMS) rice (Oryza sativa L.) lines to produce hybrids can obtain great heterosis. However, PTSGMS rice lines exhibit low stigma vitality when high-temperature (HT) stress happens during anthesis. Jasmonates (JAs) are novel phytohormones and play vital roles in mediating biotic and abiotic stresses. Little is known, however, if and how JAs could alleviate the harm of HT stress during anthesis to the stigma vitality of PTSGMS lines. This study investigated the question. Two PTSGMS lines and one restorer line of rice were pot-grown and subjected to normal temperature and HT stress during anthesis. The stigma exertion rate, sigma fresh weight, stigma area, contents of JAs, hydrogen peroxide (H2O2), and ascorbic acid (AsA), activity of catalase in stigmas, and the number of pollens germinated on the stigma of PTSGMS lines were determined. The results showed that a rice line with higher JAs content in the stigma under HT stress showed lower H2O2 content, higher AsA content and catalase activity in stigmas, larger stigma area, heavier stigma fresh weight, more pollens germinated on the stigma, and higher fertilization and seed-setting and rates. Applying methyl JAs during anthesis to rice panicles decreased the accumulation of reactive oxygen species and enhanced stigma vitality, thereby increasing fertilization and seed-setting rates of the hybrids of PTSGMS rice lines under HT stress. The results demonstrate that JAs attenuate the injury of HT stress to the stigma vitality of PTSGMS rice lines through enhancing antioxidant ability.

19.
Sci Total Environ ; 761: 143206, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33168249

RESUMO

Evaluating the impact of climate change factors, especially temperature and carbon dioxide (CO2), on rice yield is essential to ensure future food security. Because of the wide biogeographical distribution of rice, such evaluations are conducted exclusively through modeling efforts. However, geographical forecasts could, potentially, be improved by the inclusion of field-based data on projected increases in temperature and CO2 concentration from a given rice-growing region. In this study, the latest version of the ORYZA (v3) crop model was evaluated with additional yield data obtained from a temperature-controlled free-air CO2 enrichment system (T-FACE) in Southeastern China. ORYZA (v3) results were then evaluated in the context of phase five of the Coupled Model Intercomparison Project (CMIP5) for representative concentration pathways (RCP) 4.5 and RCP 8.5 using five global change models (GCMs). Our findings indicate that climate change, i.e., inclusion of CO2 and temperature effects, decreased mean rice yield by 3.5%, and 9.4% for RCP 4.5; and by 10.5 and 47.9% for RCP 8.5 for the scenarios in the 2050s and 2080s, respectively. The CO2 fertilizer effect partially compensated but did not offset the negative impacts of rising temperature on rice yields. Warmer temperatures were the primary factor that influenced yield by adversely affecting the spikelet fertility factor and spikelet number. Overall, climate change would have positive effects on rice yields until the middle-century in Southeastern China but negative effects were noted by the end of the century. These results may be of interest for informing policy makers and developing appropriate strategies to improve future rice productivity for this region of China.


Assuntos
Mudança Climática , Oryza , Dióxido de Carbono , China , Temperatura
20.
Sci Rep ; 10(1): 8976, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488145

RESUMO

High temperatures (HT) before heading strongly inhibit the development of spikelets in rice. Spermidine (Spd) can improve rice's resistance to HT stress; however, the mechanism underlying this effect has not been elucidated. This study investigated several parameters, including yield, superoxide anion (O2.-), protective enzyme activities, and polyamine content, in a heat-sensitive genotype, Shuanggui 1. The yield and yield components decreased dramatically when subjected to HT stress, while this reduction could be partially recovered by exogenous Spd. Spd also slowed the generation rate of O2.- and increased protective enzyme, superoxide dismutase (SOD) and catalase (CAT) activities both under normal and high temperatures, which suggested that Spd may participate in the antioxidant system. Furthermore, genes involved in polyamine synthesis were analyzed. The results show that HT before heading significantly increased the expression of arginine decarboxylase OsADC1, Spd synthase OsSPDS1 and OsSPDS3 and had little effect on the expression of the S-adenosylmethionine decarboxylase OsSAMDC2 and ornithine decarboxylase OsODC1. In addition, exogenous Spd considerably reduced the expression of OsSAMDC2, OsSPDS1 and OsSPDS3 under HT but not the expression of OsADC1. The above mentioned results indicate that the exogenous Spd could help young rice spikelets to resist HT stress by reducing the expression of OsSAMDC2, OsSPDS1 and OsSPDS3, resulting in higher levels of endogenous Spd and Spm, which were also positively correlated with yield. In conclusion, the adverse effect of HT stress on young spikelets seems to be alleviated by increasing the amounts of Spd and Spm, which provides guidance for adaptation to heat stress during rice production.


Assuntos
Carboxiliases/metabolismo , Catalase/metabolismo , Oryza/genética , Oryza/metabolismo , Fenômenos Fisiológicos Vegetais , Poliaminas/metabolismo , Espermidina Sintase/metabolismo , Espermidina/farmacologia , Superóxido Dismutase/metabolismo , Termotolerância/genética , Termotolerância/fisiologia , Carboxiliases/genética , Expressão Gênica/efeitos dos fármacos , Genótipo , Espermidina Sintase/genética , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...