Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 35(3): 705-712, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646758

RESUMO

The composition and stability of soil aggregates are important indicators for measuring soil quality, which would be affected by land use changes. Taking wetlands with different returning years (2 and 15 years) in the Yellow River Delta as the research object, paddy fields and natural wetlands as control, we analyzed the changes in soil physicochemical properties and soil aggregate composition. The results showed that soil water content, total organic carbon, dissolved organic carbon and total phosphorus of the returning soil (0-40 cm) showed an overall increasing trend with returning period, while soil pH and bulk density was in adverse. There was no significant change in clay content, electrical conductivity, and total nitrogen content. The contents of macro-aggregates and micro-aggregates showed overall increasing and decreasing trend with returning period, respectively. The stability of aggregates in the topsoil (0-10 cm) increased with returning years. Geometric mean diameter and mean weight diameter increased by 8.9% and 40.4% in the 15th year of returning, respectively, while the mass proportion of >2.5 mm fraction decreased by 10.5%. There was no effect of returning on aggregates in subsoil (10-40 cm). Our results indicated that returning paddy field to wetland in the Yellow River Delta would play a positive role in improving soil structure and aggregate stability.


Assuntos
Oryza , Rios , Solo , Áreas Alagadas , Solo/química , China , Rios/química , Oryza/crescimento & desenvolvimento , Oryza/química , Monitoramento Ambiental , Agricultura/métodos , Fósforo/análise , Fósforo/química , Carbono/análise , Carbono/química
2.
Sci Total Environ ; 922: 171360, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428613

RESUMO

Phosphorus (P) forms in soil are related to the P cycle and play an important role in maintaining the productivity and function of wetlands. Tidal hydrology is a key factor controlling soil P forms in estuary wetlands; however, the response of soil P forms to tidal hydrological changes remains unclear. A translocation experiment in the Yellow River Estuary wetland was conducted to study the effect of hydrological changes on P forms in the soil, in which freshwater marsh soils in the supratidal zone were translocated to salt marshes in different intertidal zones (up-high-tidal zone, high-tidal zone, and middle-tidal zone). Over a 23-month experiment, soil properties showed varying changes under different tidal hydrology conditions, with an increase in pH, salinity, Ca2+ and salt ions and a decrease in iron oxide and nutrients. Compared with the control, the content of different forms of phosphorus (total phosphorus, inorganic phosphorus, organic phosphorus, and calcium-bound phosphorus) in the cultured soil cores decreased from 3.3 % to 67.0 % in the intertidal zones, whereas the content of ferrum­aluminum-bound phosphorus increased from 58.9 % to 65.1 % at the end of the experiment. According to the partial least squares structural equation model, P forms are influenced by tidal hydrology mainly through the mediation of salt ions and nutrient levels. These results suggest that seawater intrusion promotes the release of P in the supratidal zone soil of estuary wetlands.

3.
Ying Yong Sheng Tai Xue Bao ; 34(11): 2985-2992, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37997409

RESUMO

The temperature sensitivity of soil carbon mineralization (Q10) is an important index to evaluate the responses of ecosystem carbon cycling to climate change. We examined the effects of three electron acceptors [SO42-, NO3- and Fe(Ⅲ)] addition on the Q10 value of anaerobic carbon mineralization of Phragmites australis community soil (0-10 cm) in the Yellow River Estuary wetland with the closed culture-gas chromatography method. The results showed that the three electron acceptors addition inhibited the production of CO2 and CH4 during the 48-day culture period, with a decrease of 17.3%-20.8% for CO2 and 29.2%-36.2% for CH4. Generally, the CO2 production differed with the concentrations of electron acceptors, while CH4 production differed with the type of electron acceptors. The CO2:CH4 ratios were significantly different with temperature, indicating an obvious temperature dependence for the anaerobic carbon mineralization pathway. The Q10 values of CO2 and CH4 production under three electron acceptor additions ranged from 1.08 to 1.11 and from 1.19 to 1.37, respectively, showing an increasing trend compared with the control. The type and concentration of electron acceptors affected the temperature dependence of CO2 production, while electron acceptors affected that of CH4 production. It is suggested that the input of reducing salts would retard the mineralization loss of organic carbon in estuary freshwater wetlands under the background of climate change, but enhance the sensitivity of carbon mineralization to increasing temperature.


Assuntos
Solo , Áreas Alagadas , Solo/química , Rios , Ecossistema , Dióxido de Carbono/análise , Carbono/análise , Estuários , Temperatura , Anaerobiose , Elétrons , Compostos Férricos , China , Metano/análise
4.
Sci Rep ; 13(1): 17650, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848460

RESUMO

Artificial oyster reefs provide important spawning and nursery grounds for a variety of fishes and large mobile crustaceans. Between July 2016 and May 2017, seasonal surveys of species composition and community structure were performed in the artificial oyster reef area and control area adjacent to the Luanhe River Estuary in China. During the survey year, 56 species belonging to 50 genera, 45 families, and 19 orders were recorded. The dominant economically important fish and mobile crustaceans were Hexagrammos otakii, Pholis fangi, Sebastes schlegelii, Charybdis japonica, and Oratosquilla oratoria. Resident fishes belonged to the Cynoglossidae, Paralichthyidae, Pleuronectidae, and Gobiidae families. Seasonally important fish species included Lateolabrax japonicus, Konosirus punctatus, Thryssa kammalensis, Hexagrammos agrammus, and Acanthopagrus schlegelii. The ranges of H' values among stations were 1.18-2.16, 0.65-1.75, 1.18-2.06, and 0.62-1.92 in spring, summer, autumn, and winter, respectively. The benthic organisms present in the community of artificial oyster reef areas can be classified into groups according to month and season. The abundance biomass curves showed that the oyster reef area in spring, autumn, and winter experienced low disturbance, whereas the community structure in summer was subject to large variations from external disturbance. We also found that as the age of the oyster reefs increased, the percentage of oysters in the low shell height group (< 40 mm) decreased. The oyster density was 324 ind/m2 for the reef created in 2016, 724 ind/m2 for the reef created in 2015, and 364 ind/m2 for the reef created in 2013. These findings can be used to develop suitable management strategies for the sustainable maintenance of artificial oyster reef ecosystems.


Assuntos
Braquiúros , Linguado , Ostreidae , Perciformes , Humanos , Animais , Ecossistema , Estações do Ano , Estuários , Rios , Peixes , Recifes de Corais
5.
Front Plant Sci ; 14: 1249139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727855

RESUMO

Soil seed bank is the growth and reproduction source of vegetation community, playing an important role in vegetation establishment, succession and renewal, biodiversity maintenance. This study has selected the nascent wetland in the Yellow River Delta (YRD) formed in 1996 as study area and investigated the diversity and key influencing factors of soil seed bank diversity. The study results show that: (1) The soil seed bank in the study area has a simple structure, containing relatively few species. A total of five plant species, which belong to four families and five genera, were found in this bank, with Phragmites australis and Suaeda salsa being the dominant plants. (2) All species are herbs without woody species. One herb is annual herb and the others are perennial herbs. (3) From the sea to the river, the changes rules of the overall density and diversity of the seed bank are not obvious. (4) The dispersal distance from salt and freshwater has a significant influence on the density of the soil seed bank but has no significant influence on the diversity. Meanwhile, the soil salt content has a significant negative influence on the diversity of seed banks. (5) Aboveground vegetation did not closely relationship with diversity of soil seed bank. All above results can provide basic data and scientific evidence for the conservation of vegetation communities in the nascent wetlands and vegetation restoration in the degraded wetlands in the YRD.

6.
Huan Jing Ke Xue ; 44(8): 4698-4705, 2023 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-37694662

RESUMO

Carbon (C), nitrogen (N), and phosphorus (P) are important nutrients, and their ecological stoichiometric characteristics can reflect the quality and fertility capacity of soil, which is critical to understanding the stable mechanisms of estuarine wetland ecosystems. Under global changes, the increase in salinity and flooding caused by sea level rise will lead to changes in biogeochemical processes in estuarine wetlands, which is expected to affect the ecological stoichiometric characteristics of soil C, N, and P and ultimately interfere with the stability of wetland ecosystems. However, it remains unclear how the C, N, and P ecological stoichiometric characteristics respond to the water-salt environment in estuarine wetlands. We differentiated changes in the C, N, and P ecological stoichiometric characteristics through an ex-situ culture experiment for 23 months in the Yellow River Estuary Wetland. The five sites with distinct tidal hydrology were selected to manipulate translocation of soil cores from the freshwater marsh to high-, middle-, and low-tidal flats in June 2019. The results showed that soil water content (SWC); electrical conductivity (EC); and C, N, and P ecological stoichiometric characteristics of freshwater marsh soil significantly changed after translocation for 23 months. SWC decreased on the high- and middle-tidal flats (P<0.05) and increased on the low-tidal flat (P<0.05). EC increased to different degrees on all three tidal flats (P<0.05). Soil total organic carbon (TOC) and total nitrogen (TN) were significantly lower on the high-tidal flat (P<0.05), whereas total phosphorus (TP) was significantly lower on the middle- and high-tidal flats (P<0.05). C:N was decreased on the high- and middle-tidal flats (P<0.05); C:P and N:P were lower on the high-tidal flat; and all C, N, and P ecological stoichiometric characteristics showed no change on the low-tidal flat (P>0.05). Pearson's analysis showed that the ecological stoichiometric characteristics of C, N, and P were related to some properties of soil over the culture sites. The PLS-SEM model showed that the water-salt environment had different effects on soil C:N, C:P, and N:P through the main pathways of negative effects on soil TOC and TP. The results suggest that sea level rise may impact the C, N, and P ecological stoichiometric characteristics in freshwater marsh soil, resulting in some possible changes in the nutrient cycles of estuarine wetlands.

7.
Mar Environ Res ; 190: 106097, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37441819

RESUMO

The health and stability of the estuary of the Yellow River ecosystem have come under increasing pressure from land-based inputs of heavy metals. While it is known that heavy metals affect the function and health of the microbial community, there remains little knowledge on the responses of the microbial community to heavy metals, particularly highly toxic mercury. The research aimed to characterize the responses of the sediment microbial community of the estuary of the Yellow River to different levels of mercury stress. Estuary sediment samples were collected for microbial community analysis, measurement of mercury [including total mercury (THg) and methylmercury (MeHg)], and measurement of other physicochemical factors, including pH, total organic carbon (TOC), sulfide, iron ratio (Fe3+/Fe2+), ammonium salt (NH4+), and biochemical oxygen demand (BOD). The application of 16S rRNA sequencing identified 60 phyla of bacteria, dominated by Proteobacteria, Firmicutes, and Bacteroidetes. Stations with higher THg or MeHg and lower microbial abundance and diversity were generally distributed further outside of the estuary. Besides mercury, the measured physicochemical factors had impacts on microbial diversities and distribution. Metagenomics assessment of three stations, representative of low, moderate, and high mercury concentrations and measured physicochemical factors, revealed the abundances and functions of predicted genes. The most abundant genes regulating the metabolic pathways were categorized as metabolic, environmental information processing, and genetic information processing, genes. At stations with high levels of mercury, the dominant genes were related to energy metabolism, signal transport, and membrane transport. Functional genes with a mercury-resistance function were generally in the mer system (merA, merC, merT, merR), alkylmercury lyase, and metal-transporting ATPase. These results offer insight into the microbial community structure of the sediments in the Yellow River Estuary and the microbial function of mercury resistance under mercury stress.


Assuntos
Mercúrio , Metais Pesados , Compostos de Metilmercúrio , Microbiota , Poluentes Químicos da Água , Mercúrio/análise , Estuários , Rios/química , RNA Ribossômico 16S/genética , Sedimentos Geológicos/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Metais Pesados/análise , Monitoramento Ambiental
8.
Front Plant Sci ; 14: 1162923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332707

RESUMO

Estuarine wetlands are highly heterogeneous due to strong interactions between freshwater input and seawater intrusion. However, little is known about how clonal plant populations adapt to heterogeneous salinity in soil environments. In the present study, the effects of clonal integration on Phragmites australis populations under salinity heterogeneity were studied using field experiments with 10 treatments in the Yellow River Delta. Clonal integration significantly increased plant height, aboveground biomass, underground biomass, root-shoot ratio, intercellular CO2 concentration, net photosynthetic rate, stomatal conductance, transpiration rate, and stem Na+ content under homogeneous treatment. Under the heterogeneous salt treatment, clonal integration significantly affected total aboveground and underground biomass, photosynthetic traits, and stem Na+ content under different salt gradients. The increase in salt concentration inhibited the physiological activity and growth of P. australis to varying degrees. Compared with the heterogeneous saline environment, clonal integration was more beneficial to P. australis populations in the homogeneous saline habitat. The results of the present study suggest that P. australis prefers homogeneous saline habitats; however, plants can adapt to heterogeneous salinity conditions via clonal integration.

9.
Environ Pollut ; 318: 120898, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36539008

RESUMO

Nuclear power plants (NPPs) developed rapidly worldwide in the last half-century and have become one of the most important electric power sources. Thermal discharge from NPPs increases the temperature of receiving waters, directly and indirectly affecting phytoplankton community. Seasonal and interannual variation in environmental factors in temperate areas makes it challenging to determine the effects of thermal effluents from NPPs on coastal phytoplankton. Here, a five-year study was performed around a NPP in the western Yellow Sea to determine how thermal effluents affect phytoplankton community during different seasons. A total of 106 phytoplankton species from 7 phyla were identified in 10 biological sites during the 19 cruises, among which diatoms dominated phytoplankton abundance in all seasons. Our results show that increased seawater temperature caused by thermal effluents (1) was not enough to cause a statistically significant effect on phytoplankton abundance composition from autumn through spring, (2) significantly stimulated phytoplankton population growth and changed phytoplankton composition in summer (3) increased the proportion of diatoms and decreased the proportion of dinoflagellate in summer, and (4) increased the abundance and dominance of Skeletonema costatum sensu lato, especially in summer. The findings of this study provide essential information on the ecological impact of thermal effluents from NPPs in temperate coastal areas.


Assuntos
Diatomáceas , Fitoplâncton , Centrais Nucleares , Estações do Ano , China
10.
Drug Saf ; 45(8): 853-862, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35794349

RESUMO

INTRODUCTION: Discharge summaries contain valuable information about adverse drug reactions, but their unstructured nature makes them challenging to analyse and use as a signal source for pharmacovigilance. Machine learning has shown promise in identifying discharge summaries that contain related drug-adverse event pairs but has fared relatively poorer in entity extraction. METHODS: A hybrid model is developed combining rule-based and machine learning algorithms using discharge summaries with the aim of maximising capture of related drug-adverse event pairs. The rule first identifies segments containing adverse event entities within a 100-character distance from a drug term; machine learning subsequently estimates the relatedness of the drug and adverse event entities contained. The approach is validated on four independent datasets that are temporally and geographically separated from model development data. The impact of restricted drug-adverse event pair detection on recall is evaluated by using two of the four validation datasets that do not impose rule-based restrictions to annotations. RESULTS: The hybrid model achieves a recall of 0.80 (fivefold cross validation), 0.80 (temporal) and 0.76 (geographical) on validation using datasets containing only pre-identified target text segments that fulfil the rule-based algorithm criteria. When tested on datasets that additionally contained drug-adverse event pairs not restricted by the rule-based criteria, recall of the model declines to 0.68 and 0.62 on temporally and geographically separated datasets, respectively. CONCLUSIONS: The proposed hybrid model demonstrates reasonable generalisability on external validation. Rule-based restriction of the detection space results in an approximately 12-14% reduction in recall but improves identification of the related drug and adverse event terms.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Alta do Paciente , Algoritmos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Hospitais , Humanos , Aprendizado de Máquina
11.
Huan Jing Ke Xue ; 43(6): 3241-3252, 2022 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-35686794

RESUMO

To clarify the distribution characteristics and the ecological stoichiometric characteristics of nutrient elements in soils under different vegetation types, four typical natural wetlands, i.e., Phragmites australis wetland, Tamarix chinensis wetland, Suaeda salsa wetland, and Tidal flat wetland, as well as Gossypium spp. fields that were reclaimed from natural wetlands, were selected as study sites in the Yellow River Delta, and comparisons between the agricultural reclamation land and natural wetlands were conducted. The results showed that the soil total organic carbon (TOC) and total nitrogen (TN) contents in the natural wetlands were as follows:P. australis wetland and T. chinensis wetland>S. salsa wetland>Tidal flat, and the contents of TOC and TN were significantly negatively related to electrical conductivity (EC) and pH values (P<0.05). The contents of TOC, TN, and total phosphorus (TP) in Gossypium spp. fields were significantly higher than those in natural wetlands (P<0.05), especially the contents of nitrate nitrogen (NO3--N) in Gossypium spp. fields, which were 9.4-11.4 times that of natural wetlands. However, no significant correlations between TOC, TN, and TP and EC and pH values (P>0.05) were observed in Gossypium spp. fields. The results of correlation analysis showed that the C/N of natural wetlands were mainly controlled by the contents of TN (P<0.05), and the C/N of the Gossypium spp. fields were significantly lower than those of natural wetlands (P<0.05). The soil C/P and N/P of natural wetlands and Gossypium spp. fields in the Yellow River Delta were low, and the variation trends were consistent with those of soil TOC and TN. Comparative analysis revealed, on the whole, that there were significantly different soil nutrient element contents, C/N, C/P, and N/P in Gossypium spp. fields compared to those of natural wetlands (P<0.05). The process of reclamation could significantly change the spatial distribution of nutrient elements in wetlands. Our results should be of importance in revealing the biogeochemical process of soil nutrient elements in coastal wetland and the influence of agricultural reclamation activities on the differentiation of soil nutrient elements.


Assuntos
Solo , Áreas Alagadas , Carbono/análise , China , Nitrogênio/análise , Nutrientes/análise , Fósforo/análise , Rios/química , Solo/química
12.
Sci Total Environ ; 765: 142694, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33071117

RESUMO

The environment of the Bohai Sea is under enormous pressure because of rapid economic and urban development associated with increased population inhabiting the coastal zone. Environmental threats to the coastal ecosystem were analyzed using 2006-2017 statistical/monitoring data from the State Oceanic Administration, China. The results showed that harmful algal blooms occurred a total of 104 times during the period of 2006-2017, for a cumulative area of more than 21,275 km2. The main environmental threats came from offshore oil and gas production in the form of hydrocarbon pollution during extraction, as well as from urban wastewater and sewage. Oil pollution, mainly generated from spills, offshore oil platforms and large number of vessels/ports, was found to cause very severe negative impacts on the environment. Another threat is from excessive groundwater exploitation which has resulted in seawater intrusion and soil salinization occurrence in more than 90% of coastal areas around the Bohai Sea. The maximum distance of intrusion by seawater and soil salinization was more than 40 and 32 km inland, respectively. Contamination by terrestrial pollutants was identified as another threat affecting the environment quality of the Bohai Sea. Approximately 840,000 t of pollutants were carried into the sea by major rivers annually for 2010-2017. The standard discharge rate of terrestrial-source sewage outlets did not exceed 50%; however, only 13.12% of sea areas adjacent to sewage outlets (rivers) met the environmental quality requirements for functional marine areas. The results also showed the frequency of storm surges in the Bohai Sea which was 8.83 times per year and the resulting annual direct economic losses reached (RMB) 1.77 billion for 2006-2017. The results highlight the urgent need to implement an ecological management strategy to reduce the heavy ecological burdens in the coastal zone of the Bohai Sea.

13.
Sci Total Environ ; 765: 142691, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33071119

RESUMO

Inland pollutants input is a key impact factor for the coastal water quality of the Bohai Sea. The coastal and inland water pollutant inputs were analyzed by using monitoring data of recent years from the State Oceanic Administration. The results showed that more than 56% of the Bohai Sea area was unclean seawater in 2012, although the water quality improved gradually after that time. In 2017, about one-third of the Bohai Sea area still had unclean seawater. Inorganic nitrogen, reactive phosphate, and petroleum hydrocarbons are the main pollutants in the seawater. A total of approximately 840,000 t of pollutants was transported to the sea each year by major rivers during 2010-2017. Significant correlations (p < 0.05) were found between the third-grade level seawater area and the pollutants of CODcr, petroleum, NO3--N, NH4+-N, NO2--N, Cu, and Pb and between the inferior fourth-grade level seawater area and the pollutants of petroleum, NO2--N, Pb, and NO3--N. The standard discharge rate of terrestrial-source sewage outlets was no more than 50%. The low standard discharge rate of the major terrestrial-source sewage pollutants of CODcr, NH4+-N, TP, BOD5, and SS caused more than 80% of the monitored sea areas adjacent to the selected key sewage outlets to not meet the water quality requirements of the marine functional area. The results suggest that implementing a coastal water management plan is necessary to reduce the heavy ecological burdens on the coastal zone of the Bohai Sea.

14.
Mar Pollut Bull ; 142: 537-543, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31232335

RESUMO

Using a laboratory simulation experiment, we studied the trend of change in methylmercury (MeHg) content of sediments in response to the changing salinity of flooding water (deionized water, 0.5%, 1.0%, 1.5%, and 2.0%) and sulfate-reducing bacteria (SRB) content for both the surface layer (0-10 cm) and the bottom layer (10-20 cm) of Suaeda heteroptera wetland sediments in the Liaohe estuary under anaerobic and aerobic conditions, respectively. The results showed that under AAC (anaerobic conditions), the MeHg content in the surface and bottom sediment layers increased first and then decreased over time and was highest at the 14th day. In contrast, under AC (aerobic conditions), the MeHg content in sediments of both layers increased slowly with increasing test time. The MeHg content in sediments increased first and then decreased with rising salinity and was highest at a salinity of 1.0%. Among the samples collected at different experimental stages, the SRB content in the sediments showed a decreasing trend with rising flooding salinity under AAC and AC. The MeHg and SRB contents were higher under anaerobic conditions than under aerobic conditions. Linear fitting results showed that there was no linear correlation between MeHg contents and SRB quantities in surface and bottom sediments under AAC and AC (R2 < 0.1). Collectively, these results suggest an important role for flooding salinity and anaerobic-aerobic conditions in the production of MeHg in S. heteroptera wetlands of the Liaohe estuary, and may predict the ecological risk of methylmercury according to the change of salinity.


Assuntos
Chenopodiaceae , Sedimentos Geológicos/química , Compostos de Metilmercúrio/química , Poluentes Químicos da Água/química , Áreas Alagadas , Animais , China , Monitoramento Ambiental , Estuários , Inundações , Sedimentos Geológicos/microbiologia , Compostos de Metilmercúrio/análise , Oxirredução , Salinidade , Poluentes Químicos da Água/análise
15.
Int J Med Inform ; 128: 62-70, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31160013

RESUMO

BACKGROUND: Hospital discharge summaries offer a potentially rich resource to enhance pharmacovigilance efforts to evaluate drug safety in real-world clinical practice. However, it is infeasible for experts to read through all discharge summaries to find cases of drug-adverse event (AE) relations. PURPOSE: The objective of this paper is to develop a natural language processing (NLP) framework to detect drug-AE relations from unstructured hospital discharge summaries. BASIC PROCEDURES: An NLP algorithm was designed using customized dictionaries of drugs, adverse event (AE) terms, and rules based on trigger phrases, negations, fuzzy logic and word distances to recognize drug, AE terms and to detect drug-AE relations. Furthermore, a customized annotation tool was developed to facilitate expert review of discharge summaries from a tertiary hospital in Singapore in 2011. MAIN FINDINGS: A total of 33 trial sets with 50 to 100 records per set were evaluated (1620 discharge summaries) by our algorithm and reviewed by pharmacovigilance experts. After every 6 trial sets, drug and AE dictionaries were updated, and rules were modified to improve the system. Excellent performance was achieved for drug and AE entity recognition with over 92% precision and recall. On the final 6 sets of discharge summaries (600 records), our algorithm achieved 75% precision and 59% recall for identification of valid drug-AE relations. PRINCIPAL CONCLUSIONS: Adverse drug reactions are a significant contributor to health care costs and utilization. Our algorithm is not restricted to particular drugs, drug classes or specific medical specialties, which is an important attribute for a national regulatory authority to carry out comprehensive safety monitoring of drug products. Drug and AE dictionaries may be updated periodically to ensure that the tool remains relevant for performing surveillance activities. The development of the algorithm, and the ease of reviewing and correcting the results of the algorithm as part of an iterative machine learning process, is an important step towards use of hospital discharge summaries for an active pharmacovigilance program.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos/estatística & dados numéricos , Algoritmos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Registros Eletrônicos de Saúde/estatística & dados numéricos , Erros Médicos/prevenção & controle , Processamento de Linguagem Natural , Alta do Paciente/estatística & dados numéricos , Humanos , Aprendizado de Máquina , Singapura
16.
Sci Total Environ ; 642: 946-953, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29929146

RESUMO

Increasing salinity has important impacts on biogeochemical processes in estuary wetlands, with the potential to influence the soil respiration, dissolved organic carbon (DOC) and microbial population. However, it is unclear how soil respiration is related to changes in the DOC and microbial community composition with increasing salinity. In this study, soil cores were sampled from a brackish wetland in the Liaohe River estuary and treated by salinity solutions at four levels (fresh water, 3‰, 5‰, and 10‰). Samples of gas, water and soil were collected to determine the respiration rates and microbial community structure of the soil and the DOC leaching from the soil. Compared to the low-salinity treatments (fresh water and 3‰), the high-salinity treatments (5‰ and 10‰) decreased the soil respiration rates by 45-57% and decreased the DOC concentrations by 47-55%. However, no significant differences were observed within the low-salinity treatments nor the high-salinity treatments. There is a positive correlation between the soil respiration rates and DOC concentrations in all treatments, but it does not indicate a genetic cause-effect relationship between them. The microbial community structure varied with the salinity level, with higher ß- and δ-Proteobacteria abundance, as well as higher Anaerolineae, and lower Clostridia abundance in the high-salinity treatments. The respiration rates were slightly negatively related to the richness of Proteobacteria and positively related to the richness of Clostridia. This study suggests that there may be a salinity threshold (3-10‰) impacting the organic carbon loss from estuarine brackish wetlands. In addition, the response of soil respiration to increasing salinity may be mainly linked to changes in the microbial community composition rather than changes in the DOC quantity.


Assuntos
Monitoramento Ambiental , Estuários , Salinidade , Áreas Alagadas , Carbono , China , Rios , Solo
17.
Ying Yong Sheng Tai Xue Bao ; 18(1): 185-92, 2007 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-17396522

RESUMO

With intact soil core and by using acetylene inhibition method, this paper measured the N2O emission and denitrification rates of typical Calamagrostis angustifolia wetland soils in Sanjiang Plain, analyzed their relationships with environmental factors, and estimated the total amounts of N2O emission and denitrification loss. The results showed that meadow marsh soil and humus marsh soil had a similar change range of N2O emission rate (0.020-0.089 kg N x hm(2) x d(-1) and 0.012-0.033 kg N x hm(2) x d(-1), respectively), but the former had a much higher N2O emission rate than the latter, and the difference was significant (P < 0.05). As for denitrification rate, its change range was 0.024-0.127 kg N x hm(2) x d(-1) for meadow marsh soil and 0.021-0.043 kg N x hm(2) x d(-1) for humus marsh soil. Meadow marsh soil also had a higher denitrification rate than humus marsh soil, but the difference was not significant (P > 0.05). In meadow marsh soil, nitrification played an important role in N2O emission and nitrogen loss; while in humus marsh soil, denitrification was the main process inducing N2O emission and nitrogen loss. For these two soils, nitrogenous compounds were not the important factor affecting nitrification-denitrification. In meadow marsh soil, temperature had more evident effect, where nitrification-denitrification had a significant positive correlation with the soil temperature at the depths of 5 cm, 10 cm and 15 cm (P < 0.05). Soil moisture condition was another important factor inducing the difference of N2O emission and denitrification rates. In growth season, the amount of N2O emission and denitrification loss was 5.216 kg N x hm(-2) and 6.166 kg N x hm(-2) for meadow marsh soil, and 3.196 kg N x hm(-2) and 4.407 kg N x hm(-2) for humus marsh soil, respectively. In the denitrification productions of meadow marsh soil and humus marsh soil, the maximum value of N2O/N2 ratio was 5.49 and 3.76, respectively, indicating that the proportion of N2 in denitrification productions was higher in humus marsh soil than in meadow marsh soil, and the seasonal waterlogged condition could induce the decrease of N2O/N2 ratio.


Assuntos
Biodegradação Ambiental , Nitrogênio/análise , Óxido Nitroso/análise , Solo/análise , Áreas Alagadas , China , Nitrogênio/química
18.
Huan Jing Ke Xue ; 27(11): 2145-9, 2006 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-17326416

RESUMO

Using the static chamber and chromatogram method, H2S and COS emission fluxes from the mash meadow Calamagrostis angustifolia in Sanjiang Plain were measured during growth season(5-9 month), the results showed that the seasonal and diurnal variations of H2S and COS emission fluxes were obvious, the mean H2S and COS emission fluxes from the mash meadow Calamagrostis angustifolia were 0.34 microg x (m2 x h)(-1) and - 0.29 microg x (m2 x h)(-1) respectively, the Calamagrostis angustifolia wetlands were the sources for H2S and the sinks for COS during the growth time. The emission fluxes of H2S and COS were affected by the Calamagrostis angustifolia growth, and there were H2S emission peak and COS absorbed peak during the bloom growth time, meanwhile the integrative correlation of H2S and COS emission fluxes were observed.


Assuntos
Sulfeto de Hidrogênio/análise , Poaceae/metabolismo , Óxidos de Enxofre/análise , Áreas Alagadas , Ar/análise , China , Monitoramento Ambiental , Poaceae/crescimento & desenvolvimento , Estações do Ano , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...