Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(28): 17471-17478, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32715232

RESUMO

In this contribution, biochar from municipal sludge was used as a novel matrix for the synthesis of a series of calcium-based heterogeneous catalysts toward biodiesel production. Their catalytic activity was investigated in terms of catalyst loading and calcination temperature during preparation, in addition to the transesterification parameters including the methanol/oil molar ratio, reaction time, and catalyst amount. The highest biodiesel yield up to 93.77% was achieved with the 30Ca/A-SBC-700, and it maintained as high as 84.9% even after 10 cycles of a consecutively alternating catalysis and regeneration process. It was revealed that the porous municipal sludge biochar and autologous SiO2 were accountable for the superior stability of the present catalyst. This work may provide a new path to value-added valorization of sludge waste and also a renewable and efficient catalyst for biodiesel production at a low cost.

2.
Nanoscale ; 9(20): 6886-6894, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28498384

RESUMO

The oxygen evolution reaction (OER) has been viewed as a critical step in electrochemical energy conversion and storage devices. However, searching for cheap and efficient OER electrocatalysts still remains an urgent task. Herein, we develop a new strategy involving a one-step electrochemical deposition and dissolution method to fabricate hydrophilic porous CoS2/carbon nanotube (CNT) composites (CNT-CoS2). X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy measurements confirm the formation of hydrophilic groups on the surface of the porous CoS2 during electrochemical oxidation. Our design holds several advantages. The electricity conductivity of CoS2 is increased by introducing CNTs as a conductive substrate. The porous nanostructures of CoS2 increase its surface area, and provide paths to promote charge and reactant transfer. The active edge sites modified with hydrophilic groups can increase the content of electrolyte-electrode contact points, increasing the intrinsic catalytic performance of CoS2. These factors allow CNT-CoS2 to achieve a low onset potential of 1.33 V vs. RHE, a stable current density (j) of 10 mA cm-2 at an overpotential of 290 mV, and excellent stability under alkaline conditions compared to that of IrO2. The comprehensive performance of the CNT-CoS2 electrocatalyst is comparable to or better than that of any reported noble metal-free OER catalyst, even RuO2 and IrO2. This facile synthesis strategy involving synchronous electrochemical deposition and dissolution should be easily adapted for large-scale water electrolysis.

3.
ACS Nano ; 11(2): 2209-2218, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28146627

RESUMO

Lithium-sulfur batteries have become an appealing candidate for next-generation energy-storage technologies because of their low cost and high energy density. However, one of their major practical problems is the high solubility of long-chain lithium polysulfides and their infamous shuttle effect, which causes low Coulombic efficiency and sulfur loss. Here, we introduced a concept involving the dithiothreitol (DTT) assisted scission of polysulfides into lithium-sulfur system. Our designed porous carbon nanotube/S cathode coupling with a lightweight graphene/DTT interlayer (PCNTs-S@Gra/DTT) exhibited ultrahigh cycle-ability even at 5 C over 1100 cycles, with a capacity degradation rate of 0.036% per cycle. Additionally, the PCNTs-S@Gra/DTT electrode with a 3.51 mg cm-2 sulfur mass loading delivered a high initial areal capacity of 5.29 mAh cm-2 (1509 mAh g-1) at current density of 0.58 mA cm-2, and the reversible areal capacity of the cell was maintained at 3.45 mAh cm-2 (984 mAh g-1) over 200 cycles at a higher current density of 1.17 mA cm-2. Employing this molecule scission principle offers a promising avenue to achieve high-performance lithium-sulfur batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...