Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
2.
Explor Res Clin Soc Pharm ; 14: 100460, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974055

RESUMO

Background: This study evaluates the impact of Real-Time Prescription Benefits (RTPB), a tool integrated into electronic health records (EHRs), on patient out-of-pocket costs in an academic institution. RTPB provides prescribers with alternative, less expensive medications based on insurance plans. The primary measure was cost-savings, defined as the difference between the out-of-pocket cost of the prescribed medication and its alternative. Methods: A retrospective analysis of prescriptions from outpatient clinics in a university-based health system was conducted between May 2020 and July 2021. Prescriptions were analyzed at the 2nd level of the Anatomical Therapeutic Chemical (ATC) classification system. Costs were standardized to a 30-day supply. Standardized cost and total cost per prescription, and overall savings for the top 20 medication classes at the 2nd ATC level were calculated. The overall impact of RTPB was estimated based on selecting the least expensive alternative suggested by RTPB. Results: The study found that RTPB information was provided for 22% of prescriptions, with suggested alternatives for 1.26%. Among prescriptions with an alternative selected, the standardized average cost saving was $38.83. The study realized $15,416 in patient total cost savings. If the least expensive RTPB-suggested alternative were chosen for all prescriptions, an estimated $276,386 could have been saved. Psychoanaleptic and psycholeptic medications were the most prescribed with an alternative, with most savings in specialty drugs like anthelmintic and immunostimulant medications. Conclusion: The study highlights the importance of RTPB in reducing patient costs. It reports patient cost-savings with RTPB in prescribing decisions. Future research could explore the impact of RTPB on medication adherence using pharmacy claims data.

3.
J Phys Chem Lett ; : 7539-7547, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023916

RESUMO

Ionic liquids (ILs) are an exciting class of electrolytes finding applications in many areas from energy storage to solvents, where they have been touted as "designer solvents" as they can be mixed to precisely tailor the physiochemical properties. As using machine learning interatomic potentials (MLIPs) to simulate ILs is still relatively unexplored, several questions need to be answered to see if MLIPs can be transformative for ILs. Since ILs are often not pure, but are either mixed together or contain additives, we first demonstrate that a MLIP can be trained to be compositionally transferable; i.e., the MLIP can be applied to mixtures of ions not directly trained on, while only being trained on a few mixtures of the same ions. We also investigated the accuracy of MLIPs for a novel IL, which we experimentally synthesize and characterize. Our MLIP trained on ∼200 DFT frames is in reasonable agreement with our experiments and DFT.

4.
Biomedicines ; 12(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38927468

RESUMO

BACKGROUND: DNA methylation may be a link between HIV, aging, and the increased risk of lung comorbidities. We investigated whether bronchoalveolar lavage (BAL) cells of people living with HIV (PLWH) demonstrate epigenetic disruptions and advanced epigenetic aging. METHODS: BAL cell DNA methylation from 25 PLWH and 16 HIV-uninfected individuals were tested for differential methylation of Alu and LINE-1 sites, markers of aging. We used a weighted gene correlation network analysis to identify HIV- and age-associated co-methylation networks. We tested the effect of HIV on DNA methylation using a robust linear model (false discovery rate < 0.10). RESULTS: The BAL cells of PLWH were marked by global hypomethylation in both Alu and LINE-1 elements. Six co-methylated CpG networks were identified that were significantly associated with age; of these, the red module was significantly differentially methylated in PLWH and enriched pathways (e.g., Ras signaling and T-cell receptors). We identified 6428 CpG sites associated with HIV. CONCLUSIONS: We have shown here for the first time that alterations in the DNA methylation of BAL cells in the lung with HIV show a pattern of advanced aging. This study strongly supports that HIV may contribute to an increased the risk of lung comorbidities through the epigenetics of aging.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38343306

RESUMO

BACKGROUND: Dysregulation of the airway microbiota is thought to contribute to airway inflammation in both chronic rhinosinusitis (CRS) and asthma. However, the relationship between the upper and lower airway microbiome remains unclear. METHODS: Sinus and lung brushes were collected from 29 CRS participants undergoing sinus surgery. DNA was extracted and submitted for 16s rRNA microbiome sequencing. Alpha and beta diversity metrics, taxonomic composition, and differences between individual taxa were compared for paired sinus and bronchial samples. RESULTS: Twenty-three out of 29 participants had sufficient samples for analysis. The mean (standard deviation) age was 51.59 (14.57) years, and 10 (44%) patients were female. Twelve (52%) patients had comorbid asthma. Sinus brushes had significantly higher alpha diversity indexes (Shannon and Faith) compared to bronchial brushes (p < 0.001). Beta diversity metrics were significantly different between the sinus and bronchial samples. Principal coordinate analysis showed no clustering of paired nasal and bronchial samples. Sinus brushes had significantly more Lawsonella, Corynebacterium, and Staphylococcus compared to bronchia brushes, while the latter were enriched in Tropheryma and Sphingomonas, among others (false discovery rate [FDR]-adjusted p < 0.01). Finally, CRS patients with comorbid asthma had significantly higher Pseudomonas and Peptoniphilus in sinus brushes and lower Prevotella in bronchial brushes when compared to non-asthmatics (FDR-adjusted p < 0.01). CONCLUSION: The sinus and bronchial bacterial microbiomes differ in important ways. Our study suggests that migration of bacteria from the sinus into the lower airways is unlikely in patients with CRS.

6.
Chem Mater ; 35(21): 9111-9126, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38027543

RESUMO

The Li2S-P2S5 pseudo-binary system has been a valuable source of promising superionic conductors, with α-Li3PS4, ß-Li3PS4, HT-Li7PS6, and Li7P3S11 having excellent room-temperature Li-ion conductivity >0.1 mS/cm. The metastability of these phases at ambient temperature motivates a study to quantify their thermodynamic accessibility. Through calculating the electronic, configurational, and vibrational sources of free energy from first principles, a phase diagram of the crystalline Li2S-P2S5 space is constructed. New ground-state orderings are proposed for α-Li3PS4, HT-Li7PS6, LT-Li7PS6, and Li7P3S11. Well-established phase stability trends from experiments are recovered, such as polymorphic phase transitions in Li7PS6 and Li3PS4, and the instability of Li7P3S11 at high temperature. At ambient temperature, it is predicted that all superionic conductors in this space are indeed metastable but thermodynamically accessible. Vibrational and configurational sources of entropy are shown to be essential toward describing the stability of superionic conductors. New details of the Li sublattices are revealed and are found to be crucial toward accurately predicting configurational entropy. All superionic conductors contain significant configurational entropy, which suggests an inherent correlation between fast Li diffusion and thermodynamic stability arising from the configurational disorder.

7.
Biotechniques ; 75(4): 157-167, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37815826

RESUMO

Single-cell RNA sequencing (scRNA-seq) is an important tool for understanding disease pathophysiology, including airway diseases. Currently, the majority of scRNA-seq studies in airway diseases have used invasive methods (airway biopsy, surgical resection), which carry inherent risks and thus present a major limitation to scRNA-seq investigation of airway pathobiology. Bronchial brushing, where the airway mucosa is sampled using a cytological brush, is a viable, less invasive method of obtaining airway cells for scRNA-seq. Here we describe the development of a rapid and minimal handling protocol for preparing single-cell suspensions from bronchial brush specimens for scRNA-seq. Our optimized protocol maximizes cell recovery and cell quality and facilitates large-scale profiling of the airway transcriptome at single-cell resolution.


Assuntos
Perfilação da Expressão Gênica , Software , Perfilação da Expressão Gênica/métodos , Broncoscopia , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos
8.
Cell Oncol (Dordr) ; 46(6): 1659-1673, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37318751

RESUMO

BACKGROUND: Recent studies have uncovered the near-ubiquitous presence of microbes in solid tumors of diverse origins. Previous literature has shown the impact of specific bacterial species on the progression of cancer. We propose that local microbial dysbiosis enables certain cancer phenotypes through provisioning of essential metabolites directly to tumor cells. METHODS: 16S rDNA sequencing of 75 patient lung samples revealed the lung tumor microbiome specifically enriched for bacteria capable of producing methionine. Wild-type (WT) and methionine auxotrophic (metA mutant) E. coli cells were used to condition cell culture media and the proliferation of lung adenocarcinoma (LUAD) cells were measured using SYTO60 staining. Further, colony forming assay, Annexin V Staining, BrdU, AlamarBlue, western blot, qPCR, LINE microarray and subcutaneous injection with methionine modulated feed were used to analyze cellular proliferation, cell-cycle, cell death, methylation potential, and xenograft formation under methionine restriction. Moreover, C14-labeled glucose was used to illustrate the interplay between tumor cells and bacteria. RESULTS/DISCUSSION: Our results show bacteria found locally within the tumor microenvironment are enriched for methionine synthetic pathways, while having reduced S-adenosylmethionine metabolizing pathways. As methionine is one of nine essential amino acids that mammals are unable to synthesize de novo, we investigated a potentially novel function for the microbiome, supplying essential nutrients, such as methionine, to cancer cells. We demonstrate that LUAD cells can utilize methionine generated by bacteria to rescue phenotypes that would otherwise be inhibited due to nutrient restriction. In addition to this, with WT and metA mutant E. coli, we saw a selective advantage for bacteria with an intact methionine synthetic pathway to survive under the conditions induced by LUAD cells. These results would suggest that there is a potential bi-directional cross-talk between the local microbiome and adjacent tumor cells. In this study, we focused on methionine as one of the critical molecules, but we also hypothesize that additional bacterial metabolites may also be utilized by LUAD. Indeed, our radiolabeling data suggest that other biomolecules are shared between cancer cells and bacteria. Thus, modulating the local microbiome may have an indirect effect on tumor development, progression, and metastasis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Humanos , Metionina/genética , Metionina/metabolismo , Escherichia coli/metabolismo , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/patologia , Racemetionina/metabolismo , Proliferação de Células/genética , S-Adenosilmetionina/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Mamíferos/metabolismo , Microambiente Tumoral
9.
Respir Res ; 24(1): 124, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143066

RESUMO

BACKGROUND: People living with HIV (PLWH) are at increased risk of developing Chronic Obstructive Pulmonary Disease (COPD) independent of cigarette smoking. We hypothesized that dysbiosis in PLWH is associated with epigenetic and transcriptomic disruptions in the airway epithelium. METHODS: Airway epithelial brushings were collected from 18 COPD + HIV + , 16 COPD - HIV + , 22 COPD + HIV - and 20 COPD - HIV - subjects. The microbiome, methylome, and transcriptome were profiled using 16S sequencing, Illumina Infinium Methylation EPIC chip, and RNA sequencing, respectively. Multi 'omic integration was performed using Data Integration Analysis for Biomarker discovery using Latent cOmponents. A correlation > 0.7 was used to identify key interactions between the 'omes. RESULTS: The COPD + HIV -, COPD -HIV + , and COPD + HIV + groups had reduced Shannon Diversity (p = 0.004, p = 0.023, and p = 5.5e-06, respectively) compared to individuals with neither COPD nor HIV, with the COPD + HIV + group demonstrating the most reduced diversity. Microbial communities were significantly different between the four groups (p = 0.001). Multi 'omic integration identified correlations between Bacteroidetes Prevotella, genes FUZ, FASTKD3, and ACVR1B, and epigenetic features CpG-FUZ and CpG-PHLDB3. CONCLUSION: PLWH with COPD manifest decreased diversity and altered microbial communities in their airway epithelial microbiome. The reduction in Prevotella in this group was linked with epigenetic and transcriptomic disruptions in host genes including FUZ, FASTKD3, and ACVR1B.


Assuntos
Infecções por HIV , Doença Pulmonar Obstrutiva Crônica , Humanos , Disbiose/genética , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Perfilação da Expressão Gênica , Epitélio , Infecções por HIV/epidemiologia , Infecções por HIV/genética
10.
Biomedicines ; 11(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36979819

RESUMO

Lower airway dysbiosis contributes to disease pathogenesis in respiratory diseases. However, little is known regarding the microbiota of lower airways or the oral cavity of healthy young persons. To address this gap, 25 healthy persons (24.3 ± 3.3 years; 52% females; no current smokers) underwent bronchoscopy during which bronchial brushing (BB) and bronchoalveolar lavage (BAL) fluid were collected. Prior to the procedure, an oral wash (OW) sample was also obtained. Microbiome analyses (16S rRNA locus) were performed (alpha- and beta-diversity, taxa annotations, and predicted functional metagenomic profiles) according to the airway compartment (BB, BAL, and OW). The greatest microbial richness was observed in OW and the lowest in BB (p < 0.001). Microbial communities differed significantly across compartments (p < 0.001), especially between BB and OW. Taxa analyses showed a significantly higher abundance of Firmicutes (BB: 32.7%; BAL: 31.4%) compared to OW (20.9%) (p < 0.001). Conversely, Proteobacteria predominated in OW (27.9%) as opposed to BB (7.0%) and BAL (12.5%) (p < 0.001), mostly due to a greater abundance of the bacteria in the Haemophilus genus in the OW (p < 0.001). The lower airway microbiota (BB and BAL) is significantly different from the OW microbiota in healthy young persons with respect to microbial diversity, taxa profiles, and predicted function.

11.
Biomedicines ; 11(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36672643

RESUMO

Epigenetic modifications are common in chronic obstructive pulmonary disease (COPD); however, their clinical relevance is largely unknown. We hypothesized that epigenetic disruptions are associated with symptoms and health status in COPD. We profiled the blood (n = 57) and airways (n = 62) of COPD patients for DNA methylation (n = 55 paired). The patients' health status was assessed using the St. George's Respiratory Questionnaire (SGRQ). We conducted differential methylation analyses and identified pathways characterized by epigenetic disruptions associated with SGRQ scores and its individual domains. 29,211 and 5044 differentially methylated positions (DMPs) were associated with total SGRQ scores in blood and airway samples, respectively. The activity, impact, and symptom domains were associated with 9161, 25,689 and 17,293 DMPs in blood, respectively; and 4674, 3730 and 5063 DMPs in airways, respectively. There was a substantial overlap of DMPs between airway and blood. DMPs were enriched for pathways related to common co-morbidities of COPD (e.g., ageing, cancer and neurological) in both tissues. Health status in COPD is associated with airway and systemic epigenetic changes especially in pathways related to co-morbidities of COPD. There are more blood DMPs than in the airways suggesting that blood epigenome is a promising source to discover biomarkers for clinical outcomes in COPD.

12.
Environ Res ; 216(Pt 4): 114826, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403657

RESUMO

The lung microbiome plays a crucial role in airway homeostasis, yet we know little about the effects of exposures such as air pollution therein. We conducted a controlled human exposure study to assess the impact of diesel exhaust (DE) on the human airway microbiome. Twenty-four participants (former smokers with mild to moderate COPD (N = 9), healthy former smokers (N = 7), and control healthy never smokers (N = 8)) were exposed to DE (300 µg/m3 PM2.5) and filtered air (FA) for 2 h in a randomized order, separated by a 4-week washout. Endobronchial brushing samples were collected 24 h post-exposure and sequenced for the 16S microbiome, which was analyzed using QIIME2 and PICRUSt2 to examine diversity and metabolic functions, respectively. DE exposure altered airway microbiome metabolic functions in spite of statistically stable microbiome diversity. Affected functions included increases in: superpathway of purine deoxyribonucleosides degradation (pathway differential abundance 743.9, CI 95% 201.2 to 1286.6), thiazole biosynthesis I (668.5, CI 95% 139.9 to 1197.06), and L-lysine biosynthesis II (666.5, CI 95% 73.3 to 1257.7). There was an exposure-by-age effect, such that menaquinone biosynthesis superpathways were the most enriched function in the microbiome of participants aged >60, irrespective of smoking or health status. Moreover, exposure-by-phenotype analysis showed metabolic alterations in former smokers after DE exposure. These observations suggest that DE exposure induced substantial changes in the metabolic functions of the airway microbiome despite the absence of diversity changes.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Microbiota , Humanos , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Fumantes , Poluição do Ar/análise , Metagenoma , Poluentes Atmosféricos/análise
13.
Biomedicines ; 10(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36551848

RESUMO

One key feature of Chronic Obstructive Pulmonary Disease (COPD) is that its prevalence increases exponentially with age. DNA methylation clocks have become powerful biomarkers to detect accelerated aging in a variety of diseases and can help prognose outcomes in severe COPD. This study investigated which DNA methylation clock could best reflect airway epigenetic age when used in more accessible blood samples. Our analyses showed that out of six DNA methylation clocks investigated, DNAmGrimAge demonstrated the strongest correlation and the smallest difference between the airway epithelium and blood. Our findings suggests that blood DNAmGrimAge accurately reflects airway epigenetic age of individuals and that its elevation is highly associated with COPD.

14.
PLoS Pathog ; 18(11): e1010613, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36331974

RESUMO

The lung is an understudied site of HIV persistence. We isolated 898 subgenomic proviral sequences (nef) by single-genome approaches from blood and lung from nine individuals on long-term suppressive antiretroviral therapy (ART), and characterized genetic diversity and compartmentalization using formal tests. Consistent with clonal expansion as a driver of HIV persistence, identical sequences comprised between 8% to 86% of within-host datasets, though their location (blood vs. lung) followed no consistent pattern. The majority (77%) of participants harboured at least one sequence shared across blood and lung, supporting the migration of clonally-expanded cells between sites. The extent of blood proviral diversity on ART was also a strong indicator of diversity in lung (Spearman's ρ = 0.98, p<0.0001). For three participants, insufficient lung sequences were recovered to reliably investigate genetic compartmentalization. Of the remainder, only two participants showed statistically significant support for compartmentalization when analysis was restricted to distinct proviruses per site, and the extent of compartmentalization was modest in both cases. When all within-host sequences (including duplicates) were considered, the number of compartmentalized datasets increased to four. Thus, while a subset of individuals harbour somewhat distinctive proviral populations in blood and lung, this can simply be due to unequal distributions of clonally-expanded sequences. For two participants, on-ART proviruses were also phylogenetically analyzed in context of plasma HIV RNA populations sampled up to 18 years prior, including pre-ART and during previous treatment interruptions. In both participants, on-ART proviruses represented the most ancestral sequences sampled within-host, confirming that HIV sequences can persist in the body for decades. This analysis also revealed evidence of re-seeding of the reservoir during treatment interruptions. Results highlight the genetic complexity of proviruses persisting in lung and blood during ART, and the uniqueness of each individual's proviral composition. Personalized HIV remission and cure strategies may be needed to overcome these challenges.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Provírus/genética , Antirretrovirais/uso terapêutico , HIV-1/genética , Linfócitos T CD4-Positivos , Variação Genética , Pulmão , Carga Viral/genética
15.
EBioMedicine ; 83: 104206, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35944348

RESUMO

BACKGROUND: Age-related comorbidities such as chronic obstructive pulmonary disease (COPD) are common in people living with human immunodeficiency virus (PLWH). We investigated the relationship between COPD and the epigenetic age of the airway epithelium and peripheral blood of PLWH. METHODS: Airway epithelial brushings from 34 PLWH enrolled in the St. Paul's Hospital HIV Bronchoscopy cohort and peripheral blood from 378 PLWH enrolled in The Strategic Timing of Antiretroviral Treatment (START) study were profiled for DNA methylation. The DNA methylation biomarker of age and healthspan, GrimAge, was calculated in both tissue compartments. We tested the association of GrimAge with COPD in the airway epithelium and airflow obstruction as defined by an FEV1/FVC<0.70, and FEV1 decline over 6 years in blood. FINDINGS: The airway epithelium of PLWH with COPD was associated with greater GrimAge residuals compared to PLWH without COPD (Beta=3.18, 95%CI=1.06-5.31, P=0.005). In blood, FEV1/FVC

Assuntos
Infecções por HIV , Doença Pulmonar Obstrutiva Crônica , Envelhecimento/genética , Biomarcadores , Colúmbia Britânica , Estudos de Coortes , Epigênese Genética , Infecções por HIV/complicações , Infecções por HIV/genética , Humanos , Pulmão , Doença Pulmonar Obstrutiva Crônica/genética
16.
Biomedicines ; 10(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35740433

RESUMO

The associations between airway eosinophilia, measured in sputum or peripheral blood, and acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are inconsistent. We therefore aimed to determine the association between eosinophilia in bronchoalveolar lavage (BAL) fluid and AECOPD in a clinical cohort. We analyzed differential cell counts from baseline BAL fluid in participants in the DISARM clinical trial (Clinicaltrials.gov #NCT02833480) and classified participants by the presence or absence of BAL eosinophilia (>1% of total leukocytes). We determined the association between BAL eosinophilia and AECOPD over 1 year of follow-up using negative binomial regression and Cox proportional hazards test. N = 63 participants were randomized, and N = 57 had BAL differential cell counts available. Participants with BAL eosinophilia (N = 21) had a significantly increased rate of acute exacerbations (unadjusted incidence rate ratio (IRR) 2.0, p = 0.048; adjusted IRR 2.24, p = 0.04) and a trend toward greater probability of acute exacerbation (unadjusted hazard ratio (HR) 1.74, p = 0.13; adjusted HR 2.3, p = 0.1) in the year of follow-up compared to participants without BAL eosinophilia (N = 36). These associations were not observed for BAL neutrophilia (N = 41 participants), BAL lymphocytosis (N = 27 participants) or peripheral blood eosinophilia at various threshold definitions (2%, N = 37; 3%, N = 27; 4%, N = 16). BAL may therefore be a sensitive marker of eosinophilic inflammation in the distal lung and may be of benefit for risk stratification or biomarker-guided therapy in COPD.

17.
Biomedicines ; 10(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35625847

RESUMO

BACKGROUND: Patients with chronic obstructive pulmonary disease (COPD) are commonly treated with inhaled corticosteroid/long-acting ß2-agonist combination therapy. While previous studies have investigated the host-microbiome interactions in COPD, the effects of specific steroid formulations on this complex cross-talk remain obscure. METHODS: We collected and evaluated data from the Study to Investigate the Differential Effects of Inhaled Symbicort and Advair on Lung Microbiota (DISARM), a randomized controlled trial. Bronchoscopy was performed on COPD patients before and after treatment with salmeterol/fluticasone, formoterol/budesonide or formoterol-only. Bronchial brush samples were processed for microbial 16S rRNA gene sequencing and host mRNA sequencing. Longitudinal changes in the microbiome at a community, phylum and genus level were correlated with changes in host gene expression using a Spearman's rank correlation test. FINDINGS: In COPD patients treated with salmeterol/fluticasone, the expression levels of 676 host genes were significantly correlated to changes in the alpha diversity of the small airways. At a genus level, the expression levels of 122 host genes were significantly related to changes in the relative abundance of Haemophilus. Gene enrichment analyses revealed the enrichment of pathways and biological processes related to innate and adaptive immunity and inflammation. None of these changes were evident in patients treated with formoterol/budesonide or formoterol alone. INTERPRETATION: Changes in the microbiome following salmeterol/fluticasone treatment are related to alterations in the host transcriptome in the small airways of patients with COPD. These data may provide insights into why some COPD patients treated with inhaled corticosteroids may be at an increased risk for airway infection, including pneumonia. FUNDING: The Canadian Institute of Health Research, the British Columbia Lung Association, and an investigator-initiated grant from AstraZeneca.

18.
Am J Respir Crit Care Med ; 206(2): 150-160, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35426765

RESUMO

Rationale: Age-related diseases like chronic obstructive pulmonary disease (COPD) occur at higher rates in people living with human immunodeficiency virus (PLWH) than in uninfected populations. Objectives: To identify whether accelerated aging can be observed in the airways of PLWH with COPD, manifest by a unique DNA methylation signature. Methods: Bronchial epithelial brushings from PLWH with and without COPD and HIV-uninfected adults with and without COPD (N = 76) were profiled for DNA methylation and gene expression. We evaluated global Alu and LINE-1 methylation and calculated the epigenetic age using the Horvath clock and the methylation telomere length estimator. To identify genome-wide differential DNA methylation and gene expression associated with HIV and COPD, robust linear models were used followed by an expression quantitative trait methylation (eQTM) analysis. Measurements and Main Results: Epigenetic age acceleration and shorter methylation estimates of telomere length were found in PLWH with COPD compared with PLWH without COPD and uninfected patients with and without COPD. Global hypomethylation was identified in PLWH. We identified 7,970 cytosine bases located next to a guanine base (CpG sites), 293 genes, and 9 expression quantitative trait methylation-gene pairs associated with the interaction between HIV and COPD. Actin binding LIM protein family member 3 (ABLIM3) was one of the novel candidate genes for HIV-associated COPD highlighted by our analysis. Conclusions: Methylation age acceleration is observed in the airway epithelium of PLWH with COPD, a process that may be responsible for the heightened risk of COPD in this population. Their distinct methylation profile, differing from that observed in patients with COPD alone, suggests a unique pathogenesis to HIV-associated COPD. The associations warrant further investigation to establish causality.


Assuntos
Infecções por HIV , Doença Pulmonar Obstrutiva Crônica , Adulto , Envelhecimento/genética , Metilação de DNA/genética , Epigenômica , Infecções por HIV/complicações , Infecções por HIV/genética , Humanos , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética
19.
J Infect Dis ; 225(5): 862-867, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34610114

RESUMO

BACKGROUND: People with human immunodeficiency virus (PWH) have an increased risk of developing chronic obstructive pulmonary disease (COPD). METHODS: We phenotyped lung macrophages in 4 subgroups-M1 (CD40+CD163-), M2 (CD40-CD163+), double positives (CD40+CD163+), and double negatives and (CD40-CD163-)-and we determined their phagocytic capacity in PWH with and without COPD. RESULTS: People with human immunodeficiency virus with COPD have more double-negative macrophages (84.1%) versus PWH without (54.3%) versus controls (23.9%) (P=.004) and reduced phagocytosis (P=.012). Double-negative macrophages had the worst phagocytic capacity (P<.001). CONCLUSIONS: People with human immunodeficiency virus with COPD have an abundance of nonpolarized macrophages, which have poor phagocytic capacity and therefore predispose PWH to increased risk of disease progression.


Assuntos
Macrófagos Alveolares , Doença Pulmonar Obstrutiva Crônica , HIV , Humanos , Pulmão , Macrófagos , Fagocitose
20.
Am J Respir Crit Care Med ; 204(10): 1143-1152, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34464242

RESUMO

Rationale: Inhaled corticosteroids (ICS) are commonly prescribed with long-acting ß2-agonists (LABA) in chronic obstructive pulmonary disease (COPD). To date, the effects of ICS therapy on the airway microbiome in COPD are unknown. Objectives: To determine the effects of ICS/LABA on the airway microbiome of patients with COPD. Methods: Clinically stable patients with COPD were enrolled into a 4-week run-in period during which ICS was discontinued and all participants were placed on formoterol (Form) 12 µg twice daily (BID). The participants were then randomized to budesonide/formoterol (Bud + Form; 400/12 µg BID), fluticasone/salmeterol (Flu + Salm; 250/50 µg BID), or formoterol only (12 µg BID) for 12 weeks. Participants underwent bronchoscopy before and after the 12-week treatment period. The primary endpoint was the comparison of changes in the airway microbiome over the trial period between the ICS/LABA and LABA-only groups. Measurements and Main Results: Sixty-three participants underwent randomization: Bud + Form (n = 20), Flu + Salm (n = 22), and Form (n = 21) groups; 56 subjects completed all visits. After the treatment period, changes in α-diversity were significantly different across groups, especially between Flu + Salm and Form groups (Δrichness: P = 0.02; ΔShannon index: P = 0.03). Longitudinal differential abundance analyses revealed more pronounced microbial shifts from baseline in the fluticasone (vs. budesonide or formoterol only) group. Conclusions: Fluticasone-based ICS/LABA therapy modifies the airway microbiome in COPD, leading to a relative reduction in α-diversity and a greater number of bacterial taxa changes. These data may have implications in patients who develop pneumonia on ICS. Clinical trial registered with www.clinicaltrials.gov (NCT02833480).


Assuntos
Corticosteroides/uso terapêutico , Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Combinação de Medicamentos , Microbiota/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Receptores Adrenérgicos beta 2/uso terapêutico , Administração por Inalação , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...