Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytometry A ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842356

RESUMO

Optofluidic time-stretch imaging flow cytometry (OTS-IFC) provides a suitable solution for high-precision cell analysis and high-sensitivity detection of rare cells due to its high-throughput and continuous image acquisition. However, transferring and storing continuous big data streams remains a challenge. In this study, we designed a high-speed streaming storage strategy to store OTS-IFC data in real-time, overcoming the imbalance between the fast generation speed in the data acquisition and processing subsystem and the comparatively slower storage speed in the transmission and storage subsystem. This strategy, utilizing an asynchronous buffer structure built on the producer-consumer model, optimizes memory usage for enhanced data throughput and stability. We evaluated the storage performance of the high-speed streaming storage strategy in ultra-large-scale blood cell imaging on a common commercial device. The experimental results show that it can provide a continuous data throughput of up to 5891 MB/s.

2.
Chin J Integr Med ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900226

RESUMO

OBJECTIVE: To explore the effect of acupotomy intervention on autophagy of chondrocytes in rabbits with knee osteoarthritis (KOA), and to determine the possible mechanisms of acupotomy to alleviate cartilage degeneration. METHODS: The modified Videman method was used to construct a KOA rabbit model. After modeling, 40 rabbits were randomly divided into 4 groups by a random number table: control; KOA (model); KOA + acupotomy (acupotomy), and KOA + sham acupotomy (sham), 10 in each group. After a 3-week treatment course, the knee joint activity was determined by the modified Lequesne MG index. Hematoxylin-eosin staining staining was used to examine the morphological changes of chondrocytes. Autophagy of chondrocytes was observed by transmission electron microscopy. The surface morphology of cartilage tissue was observed by scanning electron microscope. The mRNA and protein levels of AMP kinase/mammalian target of rapamycin/Unc-51 (AMPK/mTOR/ULK1) signal pathway key proteins, autophagy-related factor Beclin-1 and microtubule-associated protein 1A/1B light chain 3 (LC3) in rabbit knee cartilage were assessed by real-time fluorescence quantitative polymerase chain reaction and Western blot, respectively. RESULTS: The modified Lequesne MG score of acupotomy group was significantly lower than that of model group (P<0.05). Pathological results showed that chondrocyte autophagy decreased and cartilage surface was rough in the model group, which recovered after acupotomy treatment. The mRNA expressions of AMPK, ULK1, Beclin-1 and the protein levels of p-AMPK, p-ULK1, Beclin-1, and LC3 II/LC3 I were decreased in the model group, while the mRNA and protein expressions of mTOR were increased (P<0.01). However, acupotomy treatment reversed these abnormal changes (P<0.05). CONCLUSIONS: Acupotomy could effectively up-regulate the expressions of AMPK, ULK1 and Beclin1, reduce the expression of mTOR, promote autophagy, and alleviate joint degeneration. Acupotomy is a promising complementary and alternative therapy for KOA.

3.
Sci Rep ; 14(1): 11536, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773201

RESUMO

Advances in modern medicine have extended human life expectancy, leading to a world with a gradually aging society. Aging refers to a natural decline in the physiological functions of a species over time, such as reduced pain sensitivity and reaction speed. Healthy-level physiological pain serves as a warning signal to the body, helping to avoid noxious stimuli. Physiological pain sensitivity gradually decreases in the elderly, increasing the risk of injury. Therefore, geriatric health care receives growing attention, potentially improving the health status and life quality of the elderly, further reducing medical burden. Health food is a geriatric healthcare choice for the elderly with Ganoderma tsuage (GT), a Reishi type, as the main product in the market. GT contains polysaccharides, triterpenoids, adenosine, immunoregulatory proteins, and other components, including anticancer, blood sugar regulating, antioxidation, antibacterial, antivirus, and liver and stomach damage protective agents. However, its pain perception-related effects remain elusive. This study thus aimed at addressing whether GT could prevent pain sensitivity reduction in the elderly. We used a galactose-induced animal model for aging to evaluate whether GT could maintain pain sensitivity in aging mice undergoing formalin pain test, hot water test, and tail flexes. Our results demonstrated that GT significantly improved the sensitivity and reaction speed to pain in the hot water, hot plate, and formalin tests compared with the control. Therefore, our animal study positions GT as a promising compound for pain sensitivity maintenance during aging.


Assuntos
Envelhecimento , Animais , Camundongos , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Masculino , Limiar da Dor/efeitos dos fármacos , Dor/tratamento farmacológico , Ganoderma/química , Modelos Animais de Doenças , Medição da Dor
4.
Nature ; 630(8016): 346-352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811731

RESUMO

Vertical three-dimensional integration of two-dimensional (2D) semiconductors holds great promise, as it offers the possibility to scale up logic layers in the z axis1-3. Indeed, vertical complementary field-effect transistors (CFETs) built with such mixed-dimensional heterostructures4,5, as well as hetero-2D layers with different carrier types6-8, have been demonstrated recently. However, so far, the lack of a controllable doping scheme (especially p-doped WSe2 (refs. 9-17) and MoS2 (refs. 11,18-28)) in 2D semiconductors, preferably in a stable and non-destructive manner, has greatly impeded the bottom-up scaling of complementary logic circuitries. Here we show that, by bringing transition metal dichalcogenides, such as MoS2, atop a van der Waals (vdW) antiferromagnetic insulator chromium oxychloride (CrOCl), the carrier polarity in MoS2 can be readily reconfigured from n- to p-type via strong vdW interfacial coupling. The consequential band alignment yields transistors with room-temperature hole mobilities up to approximately 425 cm2 V-1 s-1, on/off ratios reaching 106 and air-stable performance for over one year. Based on this approach, vertically constructed complementary logic, including inverters with 6 vdW layers, NANDs with 14 vdW layers and SRAMs with 14 vdW layers, are further demonstrated. Our findings of polarity-engineered p- and n-type 2D semiconductor channels with and without vdW intercalation are robust and universal to various materials and thus may throw light on future three-dimensional vertically integrated circuits based on 2D logic gates.

5.
Regen Biomater ; 11: rbae027, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605854

RESUMO

Poor bone growth remains a challenge for degradable bone implants. Montmorillonite and strontium were selected as the carrier and bone growth promoting elements to prepare strontium-doped montmorillonite coating on Mg-Ca alloy. The surface morphology and composition were characterized by SEM, EDS, XPS, FT-IR and XRD. The hydrogen evolution experiment and electrochemical test results showed that the Mg-Ca alloy coated with Sr-MMT coating possessed optimal corrosion resistance performance. Furthermore, in vitro studies on cell activity, ALP activity, and cell morphology confirmed that Sr-MMT coating had satisfactory biocompatibility, which can significantly avail the proliferation, differentiation, and adhesion of osteoblasts. Moreover, the results of the 90-day implantation experiment in rats indicated that, the preparation of Sr-MMT coating effectively advanced the biocompatibility and bone repair performance of Mg-Ca alloy. In addition, The Osteogenic ability of Sr-MMT coating may be due to the combined effect of the precipitation of Si4+ and Sr2+ in Sr-MMT coating and the dissolution of Mg2+ and Ca2+ during the degradation of Mg-Ca alloy. By using coating technology, this study provides a late-model strategy for biodegradable Mg alloys with good corrosion resistance, biocompatibility. This new material will bring more possibilities in bone repair.

6.
Regen Biomater ; 11: rbae001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343880

RESUMO

Biliary stenting is an important interventional method for the prevention and treatment of biliary tract diseases. However, complications, such as postoperative biliary infection and restenosis, frequently occur due to the extensive scope of the biliary system and the complex composition of bile. The combination of coating technology and biliary stents is expected to bring new approaches to the solution of these problems. The cutting-edge advance on functional coatings on biliary stents is reviewed from seven perspectives: anticorrosion, -bacterial, -tumor, stone-dissolving, X-ray visibility, antistent migration and functional composite coatings. The development trend is also discussed. Overall, the performance of the numerous functional coatings for various purposes is generally up to expectations, but the balance between the medications' effectiveness and their safety needs to be further adjusted. Many contemporary investigations have advanced to the level of animal experiments, offering crucial fundamental assurance for broader human studies. The combination of biliary stents and functional coatings is an innovative idea with great potential for future development.

7.
Nat Commun ; 14(1): 5550, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689704

RESUMO

Graphene has aroused great attention due to the intriguing properties associated with its low-energy Dirac Hamiltonian. When graphene is coupled with a correlated insulating substrate, electronic states that cannot be revealed in either individual layer may emerge in a synergistic manner. Here, we theoretically study the correlated and topological states in Coulomb-coupled and gate-tunable graphene-insulator heterostructures. By electrostatically aligning the electronic bands, charge carriers transferred between graphene and the insulator can yield a long-wavelength electronic crystal at the interface, exerting a superlattice Coulomb potential on graphene and generating topologically nontrivial subbands. This coupling can further boost electron-electron interaction effects in graphene, leading to a spontaneous bandgap formation at the Dirac point and interaction-enhanced Fermi velocity. Reciprocally, the electronic crystal at the interface is substantially stabilized with the help of cooperative interlayer Coulomb coupling. We propose a number of substrate candidates for graphene to experimentally demonstrate these effects.

8.
J Funct Biomater ; 14(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37754884

RESUMO

(1) Background: Traditional dressings can only superficially cover the wound, they have widespread issues with inadequate bacterial isolation and liquid absorption, and it is simple to inflict secondary wound injury when changing dressings. Therefore, it is crucial for wound healing to develop a new kind of antimicrobial colloidal dressing with good antibacterial, hygroscopic, and biocompatible qualities. (2) Methods: Ag-montmorillonite/chitosan (Ag-MMT/CS) colloid, a new type of antibacterial material, was prepared from two eco-friendly materials-namely, montmorillonite and chitosan-as auxiliary materials, wherein these materials were mixed with the natural metal Ag, which is an antibacterial agent. The optimum preparation technology was explored, and Ag-MMT/CS was characterized. Next, Staphylococcus aureus, which is a common skin infection bacterium, was considered as the experimental strain, and the in vitro antibacterial activity and cytocompatibility of the Ag-MMT/CS colloid were investigated through various experiments. Subsequently, a rat skin infection model was established to explore the in vivo antibacterial effect. (3) Results: In vitro studies revealed that the Ag-MMT/CS colloid had a good antibacterial effect on S. aureus, with an inhibition zone diameter of 18 mm and an antibacterial rate of 99.18%. After co-culture with cells for 24 h and 72 h, the cell survival rates were 88% and 94%, respectively. The cells showed normal growth and proliferation, and no evident dead cells were observed under the laser confocal microscope. After applying the colloid to the rat skin infection model, the Ag-MMT/CS treatment group exhibited faster wound healing and better local exudation and absorption in the wound than the control group, suggesting that the Ag-MMT/CS colloid exhibited a better antibacterial effect on the S. aureus. (4) Conclusions: Ag+, chitosan, and MMT present in the Ag-MMT/CS colloid dressing exert synergistic effects, and it has good antibacterial effects, cytocompatibility, and hygroscopicity, indicating that this colloid has the potential to become a next-generation clinical antibacterial dressing.

9.
Nat Commun ; 14(1): 2136, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059725

RESUMO

The realization of graphene gapped states with large on/off ratios over wide doping ranges remains challenging. Here, we investigate heterostructures based on Bernal-stacked bilayer graphene (BLG) atop few-layered CrOCl, exhibiting an over-1-GΩ-resistance insulating state in a widely accessible gate voltage range. The insulating state could be switched into a metallic state with an on/off ratio up to 107 by applying an in-plane electric field, heating, or gating. We tentatively associate the observed behavior to the formation of a surface state in CrOCl under vertical electric fields, promoting electron-electron (e-e) interactions in BLG via long-range Coulomb coupling. Consequently, at the charge neutrality point, a crossover from single particle insulating behavior to an unconventional correlated insulator is enabled, below an onset temperature. We demonstrate the application of the insulating state for the realization of a logic inverter operating at low temperatures. Our findings pave the way for future engineering of quantum electronic states based on interfacial charge coupling.

10.
Nat Nanotechnol ; 17(12): 1272-1279, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411376

RESUMO

The quantum Hall effect can be substantially affected by interfacial coupling between the host two-dimensional electron gases and the substrate, and has been predicted to give rise to exotic topological states. Yet the understanding of the underlying physics and the controllable engineering of this interaction remains challenging. Here we demonstrate the observation of an unusual quantum Hall effect, which differs markedly from that of the known picture, in graphene samples in contact with an antiferromagnetic insulator CrOCl equipped with dual gates. Two distinct quantum Hall phases are developed, with the Landau levels in monolayer graphene remaining intact at the conventional phase, but largely distorted for the interfacial-coupling phase. The latter quantum Hall phase is even present close to the absence of a magnetic field, with the consequential Landau quantization following a parabolic relation between the displacement field and the magnetic field. This characteristic prevails up to 100 K in a wide effective doping range from 0 to 1013 cm-2.

11.
Artigo em Inglês | MEDLINE | ID: mdl-33224251

RESUMO

OBJECTIVE: We examined the effects of acupotomy on the PI3K/Akt signaling pathway to elucidate the mechanism of action of acupotomy on articular chondrocyte apoptosis among rabbits with knee osteoarthritis (KOA). METHODS: New Zealand rabbits were randomly assigned to a healthy control group, placebo group, acupotomy group, and drug group, with 10 rabbits in each group. Changes in chondrocytes were examined by hematoxylin and eosin staining, and articular chondrocyte apoptosis was measured by electron microscopy and immunofluorescence. The mRNA and protein expression levels of PI3K and Akt were measured by real-time quantitative PCR and Western blot. RESULTS: In contrast, less chromatin margination and clear and smooth nuclear envelope boundary were visible in the acupotomy group and drug group. The number of apoptotic chondrocytes in the knee joint of rabbits was significantly higher in the placebo group than that in the acupotomy group and drug group (P < 0.05). The acupotomy group had a nonsignificantly lower number of apoptotic chondrocytes than the drug group (P > 0.05). Furthermore, the mRNA and protein expression levels of PI3K and Akt were significantly higher in the acupotomy group and drug group than those in the placebo group (P < 0.05) and were closer to normal levels in the acupotomy group than those in the drug group (P < 0.05). PI3K and Akt expression levels were negatively correlated with chondrocyte apoptosis in the knee joint of rabbits in all groups. CONCLUSION: Inhibiting chondrocyte apoptosis in the knee joint of KOA rabbits by upregulating the PI3K/Akt signaling pathway may be a possible mechanism of acupotomy in treating KOA.

12.
Int Urogynecol J ; 21(11): 1371-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20593163

RESUMO

INTRODUCTION AND HYPOTHESIS: This study investigated the effect of sitting and non-sitting postures on uroflowmetric parameters and postvoid residual urine (PVR) and women's preferred voiding posture. METHODS: Female university students (N = 45) voided on a modified sitting-type toilet in three postures: sitting, semi-squatting, and crouching over. Data on uroflowmetric measures were collected using a weight transducer urodynamic device and PVR was estimated by transabdominal ultrasound. RESULTS: Voiding in the three postures did not differ in terms of PVR and five of six uroflowmetric outcomes. However, "delay time to void" was significantly longer while semi-squatting than while sitting and crouching over. Furthermore, 51.1% of women had bell-shaped urinary flow curves while sitting, whereas only 22.2% and 17.8% did while semi-squatting and crouching over, respectively. Most women (88.9%) preferred a non-sitting posture when using a public sitting-type toilet. CONCLUSIONS: Women's preferred non-sitting void posture on public sitting-type toilet should be a concern.


Assuntos
Postura/fisiologia , Micção/fisiologia , Urodinâmica , Adolescente , Adulto , Feminino , Humanos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...