Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 23(4)2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561800

RESUMO

Two new hole transporting materials, 2,7-bis(9,9-diphenylacridin-10(9H)-yl)-9,9' spirobi[fluorene] (SP1) and 2,7-di(10H-phenothiazin-10-yl)-9,9'-spirobi[fluorene] (SP2), were designed and synthesized by using the Buchwald-Hartwig coupling reaction with a high yield percentage of over 84%. Both of the materials exhibited high glass transition temperatures of over 150 °C. In order to understand the device performances, we have fabricated green phosphorescent organic light-emitting diodes (PhOLEDs) with SP1 and SP2 as hole transporting materials. Both of the materials revealed improved device properties, in particular, the SP2-based device showed excellent power (34.47 lm/W) and current (38.41 cd/A) efficiencies when compare with the 4,4'-bis(N-phenyl-1-naphthylamino)biphenyl (NPB)-based reference device (30.33 lm/W and 32.83 cd/A). The external quantum efficiency (EQE) of SP2 was 13.43%, which was higher than SP1 (13.27%) and the reference material (11.45%) with a similar device structure. The SP2 hole transporting material provides an effective charge transporting path from anode to emission layer, which is explained by the device efficiencies.


Assuntos
Acridinas/química , Eletrônica , Luminescência , Fenotiazinas/química , Compostos de Espiro/química , Acridinas/síntese química , Varredura Diferencial de Calorimetria , Simulação por Computador , Eletroquímica , Microscopia de Varredura por Sonda , Fenotiazinas/síntese química , Espectrofotometria Ultravioleta , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...