Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 3522, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103091

RESUMO

Two novel core-shell structured SiO2@AIPA-S-Si-Eu and SiO2@AIPA-S-Si-Eu-phen nanocomposites have been synthesized by a bifunctional organic ligands ((HOOC)2C6H3NHCONH(CH2)3Si(OCH2CH3)3) (defined as AIPA-S-Si) connected with Eu3+ ions and silica via covalent bond. And the corresponding core-shell-shell structured SiO2@AIPA-S-Si-Eu@SiO2 and SiO2@AIPA-S-Si-Eu-phen@SiO2 nanocomposites with enhanced luminescence have been synthesized by tetraethyl orthosilicate (TEOS) hydrolysis co-deposition method. The composition and micromorphology of the nanocomposites were characterized by means of Fourier-transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDX) and X-ray photoelectron spectroscopy (XPS). The as-synthesized core-shell and core-shell-shell structured nanocomposites have excellent luminescence intensity and long lifetime. The nanocomposites show bright red light under ultraviolet lamp. However, the core-shell-shell structured nanocomposites have stronger luminescence intensity than the corresponding core-shell structured nanocomposites. Meanwhile, the core-shell-shell structured nanocomposites still exhibit good luminescence stability in aqueous solution. In addition, a large number of Si-OH on the surface of the core-shell-shell structured nanocomposites can be attached to many biomacromolecules. Therefore, they have potential applications in the fields of biology and luminescence.

2.
R Soc Open Sci ; 6(8): 190182, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31598231

RESUMO

Three novel core-shell nanostructured composites SiO2@ANA-Si-Tb, SiO2@ANA-Si-Tb-L (L = second ligand) with SiO2 as the core and terbium organic complex as the shell were successfully synthesized. The core and shell were connected together by covalent bonds. The terbium ion was coordinated with organic ligand-forming terbium organic complex in the shell layer. The organosilane (HOOCC5H4NN(CONH(CH2)3Si(OCH2CH3)3)2 (abbreviated as ANA-Si) was used as the first ligand and 1,10-phenanthroline (phen) or 2-thenoyltrifluoroacetone (TTA) was used as the second ligand. Furthermore, silica-modified SiO2@ANA-Si-Tb@SiO2, SiO2@ANA-Si-Tb-L@SiO2 core-shell-shell nanostructured composites were also synthesized by sol-gel chemical route, which involved the hydrolysis and polycondensation processes of tetraethoxysilane (TEOS) using cetyltrimethyl ammonium bromide (CTAB) as a surface-active agent. An amorphous silica shell was coated around the SiO2@ANA-Si-Tb, SiO2@ANA-Si-Tb-L core-shell nanostructured composites. The core-shell and core-shell-shell nanostructured composites exhibited excellent luminescence in the solid state. Meanwhile, an improved luminescent stability property of the core-shell-shell nanostructured composites was observed for the aqueous solution. This type of core-shell-shell nanostructured composites exhibited bright luminescence, high stability and good solubility, which may present potential applications in the fields of optoelectronic devices, bio-imaging, medical diagnosis and study on the structure of function composite materials.

3.
Sci Rep ; 9(1): 13065, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506509

RESUMO

The novel submicro-spheres SiO2@LaPO4:Eu@SiO2 with core-shell-shell structures were prepared by connecting the SiO2 submicro-spheres and the rare earth ions through an organosilane HOOCC6H4N(CONH(CH2)3Si(OCH2CH3)3 (MABA-Si). The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy (IR). It is found that the intermediate shell of the submicro-spheres was composed by LaPO4:Eu nanoparticles with the size of about 4, 5-7, or 15-34 nm. A possible formation mechanism for the SiO2@LaPO4:Eu@SiO2 submicro-spheres has been proposed. The dependence of the photoluminescence intensity on the size of the LaPO4:Eu nanoparticles has been investigated. The intensity ratios of electrical dipole transition 5D0 → 7F2 to magnetic dipole transition 5D0 → 7F1 of Eu3+ ions were increased with decreasing the size of LaPO4:Eu nanoparticles. According to the Judd-Ofelt (J-O) theory, when the size of LaPO4:Eu nanoparticles was about 4, 5-7 and 15-34 nm, the calculated J-O parameter Ω2 (optical transition intensity parameter) was 2.30 × 10-20, 1.80 × 10-20 and 1.20 × 10-20, respectively. The increase of Ω2 indicates that the symmetry of Eu3+ in the LaPO4 lattice was gradually reduced. The photoluminescence intensity of the SiO2@LaPO4:Eu@SiO2 submicro-spheres was unquenched in aqueous solution even after 15 days.

4.
Nanomaterials (Basel) ; 9(2)2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30717359

RESUMO

Two novel core-shell composites SiO2@PMDA-Si-Tb, SiO2@PMDA-Si-Tb-phen with SiO2 as the core and terbium organic complex as the shell, were successfully synthesized. The terbium ion was coordinated with organic ligand forming terbium organic complex in the shell layer. The bi-functional organosilane ((HOOC)2C6H2(CONH(CH2)3Si(OCH2CH3)3)2 (abbreviated as PMDA-Si) was used as the first ligand and phen as the second ligand. Furthermore, the silica-modified SiO2@PMDA-Si-Tb@SiO2 and SiO2@PMDA-Si-Tb-phen@SiO2 core-shell-shell composites were also synthesized by sol-gel chemical route. An amorphous silica shell was coated around the SiO2@PMDA-Si-Tb and SiO2@PMDA-Si-Tb-phen core-shell composites. The core-shell and core-shell-shell composites both exhibited excellent luminescence in solid state. The luminescence of core-shell-shell composites was stronger than that of core-shell composites. Meanwhile, an improved luminescence stability property for the core-shell-shell composites was found in the aqueous solution. The core-shell-shell composites exhibited bright luminescence, high stability, long lifetime, and good solubility, which may present potential applications in the bio-medical field.

5.
R Soc Open Sci ; 5(3): 171655, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29657773

RESUMO

Two novel core-shell structure ternary terbium composites SiO2(600)@Tb(MABA-Si)·L(L:dipy/phen) nanometre luminescence materials were prepared by ternary terbium complexes Tb(MABA-Si)·L2·(ClO4)3·2H2O shell grafted onto the surface of SiO2 microspheres. And corresponding ternary terbium complexes were synthesized using (CONH(CH2)3Si(OCH2CH3)3)2 (denoted as MABA-Si) as first ligand and L as second ligand coordinated with terbium perchlorate. The as-synthesized products were characterized by means of IR spectra, 1HNMR, element analysis, molar conductivity, SEM and TEM. It was found that the first ligand MABA-Si of terbium ternary complex hydrolysed to generate the Si-OH and the Si-OH condensate with the Si-OH on the surface of SiO2 microspheres; then ligand MABA-Si grafted onto the surface of SiO2 microspheres. The diameter of SiO2 core of SiO2(600)@Tb(MABA-Si)·L was approximately 600 nm. Interestingly, the luminescence properties demonstrate that the two core-shell structure ternary terbium composites SiO2(600)Tb(MABA-Si)·L(dipy/phen) exhibit strong emission intensities, which are 2.49 and 3.35 times higher than that of the corresponding complexes Tb(MABA-Si)·L2·(ClO4)3·2H2O, respectively. Luminescence decay curves show that core-shell structure ternary terbium composites have longer lifetime. Excellent luminescence properties enable the core-shell materials to have potential applications in medicine, industry, luminescent fibres and various biomaterials fields.

6.
RSC Adv ; 8(62): 35813-35818, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35547889

RESUMO

The hexagonal and monoclinic phase LaPO4 and LaPO4:Eu nanostructures have been controllably synthesized by a citrate-induced hydrothermal process at 100 °C. The crystal growth of LaPO4 nanostructures was investigated, and the phase transformation of nanostructured LaPO4 was systematically studied by varying the citrate concentration, pH value and reaction temperature. When 0.8 mmol of citrate was added into the reaction system, the hexagonal phase LaPO4 transformed into the monoclinic phase. High concentrations of citrate would lead to the formation of hexagonal phase LaPO4. The photoluminescence properties of the monoclinic phase LaPO4:Eu prepared using a citrate-induced process demonstrate that the electric dipole transition (5D0 → 7F2) is stronger than the magnetic dipole transition (5D0 → 7F1), which indicated that Eu3+ is in a site with no inversion center. The strongest emission peak of hexagonal phase LaPO4:Eu comes from 5D0 → 7F1. Furthermore, the citrate-induced hexagonal phase LaPO4:Eu has a stronger emission intensity than the hexagonal phase LaPO4:Eu prepared not using a citrate-induced process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...