Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 249: 121008, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096729

RESUMO

Phytoremediation, which is commonly carried out through hydroponics and substrate-based strategies, is essential for the effectiveness of nature-based engineered solutions aimed at addressing excess nitrogen in aquatic ecosystems. However, the performance and mechanisms of plants involving nitrogen removal between different strategies need to be deeply understood. Here, this study employed in-situ cultivation coupled with static nitrogen tracing experiments to elucidate the influence of both strategies on plant traits associated with nitrogen removal. The results indicated that removal efficiencies in plants with substrate-based strategies for ammonium nitrogen and nitrate nitrogen were 30.51-71.11 % and 16.82-99.95 %, respectively, which were significantly higher than those with hydroponics strategies (25.98-58.18 % and 7.29-79.19 %, respectively). Similarly, the plant nitrogen uptake rates in the substrate-based strategy also generally showed higher levels compared to hydroponics strategies (P < 0.05). Meanwhile, the microorganisms-mediated nitrous oxide emission rates in the substrate-based strategy during summer (unamended: 0.00-0.58 µg/g/d; potential: 3.35-7.65 µg/g/d) were obviously lower than those in the hydroponics strategy (unamended: 2.23-11.70 µg/g/d; potential: 9.72-43.09 µg/g/d) (P < 0.05). Notably, analysis of similarity tests indicated that the influences of strategy on the above parameters generally surpass the effects attributable to interspecies plant differences, particularly during summer (R > 0, P < 0.05). Based on statistical and metagenomic analyses, this study revealed that these differences were driven by the stabilizing influence of substrate-based strategy on plant roots and enhancing synergistic interplay among biochemical factors within plant-root systems. Even so, phytoremediation strategies did not significantly alter the characteristics of plants with regards to their tendency towards ammonium nitrogen uptake (up to 87.68 %) and dissimilatory nitrate reduction to ammonium as primary biological pathway for nitrogen transformation which accounted for 53.66-96.47 % nitrate removal. In summary, this study suggested that the substrate-based strategy should be a more effective strategy for enhancing the nitrogen removal ability of plants in subtropical river restoration practices.


Assuntos
Compostos de Amônio , Nitratos , Ecossistema , Biodegradação Ambiental , Rios , Nitrogênio/metabolismo , Desnitrificação
2.
ISME Commun ; 3(1): 94, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660098

RESUMO

Food safety of leafy greens is an emerging public health issue as they can harbor opportunistic human pathogens (OHPs) and expose OHPs to consumers. Protists are an integral part of phyllosphere microbial ecosystems. However, our understanding of protist-pathogen associations in the phyllosphere and their consequences on public health remains poor. Here, we examined phyllosphere protists, human pathogen marker genes (HPMGs), and protist endosymbionts from four species of leafy greens from major supermarkets in Xiamen, China. Our results showed that Staphylococcus aureus and Klebsiella pneumoniae were the dominant human pathogens in the vegetable phyllosphere. The distribution of HPMGs and protistan communities differed between vegetable species, of which Chinese chive possessed the most diverse protists and highest abundance of HPMGs. HPMGs abundance positively correlated with the diversity and relative abundance of phagotrophic protists. Whole genome sequencing further uncovered that most isolated phyllosphere protists harbored multiple OHPs which carried antibiotic resistance genes, virulence factors, and metal resistance genes and had the potential to HGT. Colpoda were identified as key phagotrophic protists which positively linked to OHPs and carried diverse resistance and virulence potential endosymbiont OHPs including Pseudomonas nitroreducens, Achromobacter xylosoxidans, and Stenotrophomonas maltophilia. We highlight that phyllosphere protists contribute to the transmission of resistant OHPs through internalization and thus pose risks to the food safety of leafy greens and human health. Our study provides insights into the protist-OHP interactions in the phyllosphere, which will help in food safety surveillance and human health.

3.
Chemosphere ; 338: 139533, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37459932

RESUMO

Urban greenspace (UGS) is recognized to confer significant societal benefits, but few studies explored the microbial communities and antibiotic resistance genes (ARGs) from different urban greenspace types. Here, we collected leaf and soil samples from forest, greenbelt, and parkland to analyze microbial community assembly and ARG profile. For phyllosphere fungal community, the α-diversity was higher in forest, compared to those in greenbelt and parkland. Moreover, urban greenspace types altered the community assembly. Stochastic processes had a greater effect on phyllosphere fungal community in greenbelt and parkland, while in forest they were dominated by deterministic processes. In contrast, no significant differences in bacterial community diversity, community assembly were observed between the samples collected from different urban greenspace types. A total of 153 ARGs and mobile genetic elements (MGEs) were detected in phyllosphere and soil with resistance to the majority classes of antibiotics commonly applied to humans and animals. Structural equation model further revealed that a direct association between greenspace type and ARGs in the phyllosphere even after considering the effects of all other factors simultaneously. Our findings provide new insights into the microbial communities and antibiotic resistome of urban greenspaces and the potential risk linked with human health.


Assuntos
Antibacterianos , Microbiota , Animais , Humanos , Antibacterianos/farmacologia , Solo/química , Genes Bacterianos , Parques Recreativos , Microbiologia do Solo
4.
Sci Total Environ ; 866: 161322, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36603616

RESUMO

The plastisphere is a new ecological niche. Compared to the surrounding water, microbial community composition associated with the plastisphere is known to differ with functional consequences. Here, this study characterized the bacterial and fungal communities associated with four types of plastisphere (polyethylene, polystyrene, polypropylene and polyvinyl chloride) in an estuarine habitat; assessed ecological functions including carbon, nitrogen, phosphorus and sulfur cycling, and determined the presence of antibiotic resistance genes (ARGs) and human pathogens. Stochastic processes dominated the community assembly of microorganisms on the plastisphere. Several functional genera related to nutrient cycling were enriched in the plastisphere. Compared to surrounding water and other plastisphere, the abundances of carbon, nitrogen and phosphorus cycling genes (cdaR, nosZ and chpy etc.) and ARGs (aadA2-1, cfa and catB8 etc.) were significantly increased in polyvinyl chloride plastisphere. In contrast, the polystyrene plastisphere was the preferred substrate for several pathogens being enriched with for example, Giardia lamblia 18S rRNA, Klebsiella pneumoniae phoE and Legionella spp. 23S rRNA. Overall, this study showed that different plastisphere had different effects on ecological functions and health risk in estuaries and emphasizes the importance of controlling plastic pollution in estuaries. Data from this study support global policy drivers that seek to reduce plastic pollution and offer insights into ecological functions in a new ecological niche of the Anthropocene.


Assuntos
Microbiota , Poliestirenos , Humanos , Cloreto de Polivinila , Plásticos , Água , Resistência Microbiana a Medicamentos/genética , Antibacterianos , Nitrogênio , Fósforo
5.
Sci Total Environ ; 820: 153170, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35051473

RESUMO

Spread of antibiotic resistance or the presence of antibiotic resistance genes (ARGs) in pathogens is a globally recognized threat to human health. Numerous studies have shown that application of organic fertilizers may increase the risk of ARGs, however, the risk of resistance genes associated with biofertilizers is largely unknown. To investigate whether biofertilizer application introduces ARGs to the soil, we used high-throughput quantitative polymerization chain reaction (HT-qPCR) to explore the effect of biofertilizer application over three years on soil ARGs in three orchards with different locations in China. Redundancy analysis showed specific and significant differences in the beta diversity of soil bacteria and fungi between treatments (fertilizer vs. no fertilizer). One-way ANOVA analysis revealed findings of the main driver of the significant difference in microbial community structure between fertilizer and control treatment was the change in soil properties following the application of biofertilizer. A total of 139 ARGs and 27 MGEs (mobile genetic elements), and 46 ARGs and 6 MGEs from 11 major taxa were detected in biofertilizer and soil samples, respectively. Only the samples from Guangxi had significant differences in the detected number of ARGs and MGEs between fertilization and control. Through structural equation modeling (SEM), we found that soil properties indirectly affected ARGs by shaping bacterial diversity, while bacterial abundance directly affected ARGs. Biofertilizer application did not significantly alter the relative abundance of ARGs in soil due to the complexity of the soil environment and competition between exogenous and native microorganisms. This study provided new insights into the spread of the antibiotic resistome of the soil through biofertilizer applications.


Assuntos
Microbiologia do Solo , Solo , Antibacterianos/análise , China , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Esterco/análise , Solo/química
6.
J Hazard Mater ; 425: 127774, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34801300

RESUMO

The demand for facial masks remains high. However, little is known about discarded masks as a potential refuge for contaminants and to facilitate enrichment and spread of antibiotic resistance genes (ARG) in the environment. We address this issue by conducting an in-situ time-series experiment to investigate the dynamic changes of ARGs, bacteria and protozoa associated with discarded masks. Masks were incubated in an estuary for 30 days. The relative abundance of ARGs in masks increased after day 7 but levelled off after 14 days. The absolute abundance of ARGs at 30 days was 1.29 × 1012 and 1.07 × 1012 copies for carbon and surgical masks, respectively. According to normalized stochasticity ratio analysis, the assembly of bacterial and protistan communities was determined by stochastic (NST = 62%) and deterministic (NST = 40%) processes respectively. A network analysis highlighted potential interactions between bacteria and protozoa, which was further confirmed by culture-dependent assays, that showed masks shelter and enrich microbial communities. An antibiotic susceptibility test suggested that antibiotic resistant pathogens co-exist within protozoa. This study provides an insight into the spread of ARGs through discarded masks and highlights the importance of managing discarded masks with the potential ecological risk of mask contamination.


Assuntos
Antibacterianos , COVID-19 , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Máscaras , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...