Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(20): 23751-23759, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33988354

RESUMO

Photocatalytic dehydrogenation of formic acid is a promising strategy for H2 generation. In this work, we report the use of crystalline iron phosphide (FeP) nanoparticles as an efficient and robust cocatalyst on CdS nanorods (FeP@CdS) for highly efficient photocatalytic formic acid dehydrogenation. The optimal H2 evolution rate can reach ∼556 µmol·h-1 at pH 3.5, which is more than 37 times higher than that of bare CdS. Moreover, the photocatalyst demonstrates excellent stability; no significant decrease of the catalytic activity was observed during continuous testing for more than four days. The apparent quantum yield is ∼54% at 420 nm, which is among the highest values obtained using noble-metal-free photocatalysts for formic acid dehydrogenation. This work provides a novel strategy for designing highly efficient and economically viable photocatalysts for formic acid dehydrogenation.

2.
Nat Commun ; 12(1): 1299, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637725

RESUMO

Kirigami, with facile and automated fashion of three-dimensional (3D) transformations, offers an unconventional approach for realizing cutting-edge optical nano-electromechanical systems. Here, we demonstrate an on-chip and electromechanically reconfigurable nano-kirigami with optical functionalities. The nano-electromechanical system is built on an Au/SiO2/Si substrate and operated via attractive electrostatic forces between the top gold nanostructure and bottom silicon substrate. Large-range nano-kirigami like 3D deformations are clearly observed and reversibly engineered, with scalable pitch size down to 0.975 µm. Broadband nonresonant and narrowband resonant optical reconfigurations are achieved at visible and near-infrared wavelengths, respectively, with a high modulation contrast up to 494%. On-chip modulation of optical helicity is further demonstrated in submicron nano-kirigami at near-infrared wavelengths. Such small-size and high-contrast reconfigurable optical nano-kirigami provides advanced methodologies and platforms for versatile on-chip manipulation of light at nanoscale.

3.
RSC Adv ; 11(33): 20081-20088, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35479890

RESUMO

As a natural biological material, wood has renewability, biocompatibility, biodegradability and excellent mechanical properties. This research shows a conductive polymer composed of a cellulose-based flexible film constructed from natural wood and carbon nanotubes. Part of the lignin/hemicellulose of the natural wood was removed by the deep eutectic solvent to obtain a cellulose-based flexible film with a porous structure, and then the carbon nanotubes were infiltrated into the cellulose-based flexible film by vacuum pressure impregnation treatment to obtain the final conductive polymer. This conductive polymer has high conductivity and good toughness, and shows good perception ability under a certain range of strain/stress or human activity conditions. In addition, conductive fibers can be prepared by cutting and twisting the oriented cellulose nanofibers of this conductive polymer. The above-mentioned properties of this conductive polymer provide great potential for its development in electrical-related fields.

4.
Nat Nanotechnol ; 15(12): 1012-1018, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33077965

RESUMO

Cavity design is crucial for single-mode semiconductor lasers such as the ubiquitous distributed feedback and vertical-cavity surface-emitting lasers. By recognizing that both of these optical resonators feature a single mid-gap mode localized at a topological defect in the one-dimensional lattice, we upgrade this topological cavity design concept into two dimensions using a honeycomb photonic crystal with a vortex Dirac gap by applying the generalized Kekulé modulations. We theoretically predict and experimentally show on a silicon-on-insulator platform that the Dirac-vortex cavities have scalable mode areas, arbitrary mode degeneracies, vector-beam vertical emission and compatibility with high-index substrates. Moreover, we demonstrate the unprecedentedly large free spectral range, which defies the universal inverse relation between resonance spacing and resonator size. We believe that our topological micro-resonator will be especially useful in applications where single-mode behaviour is required over a large area, such as the photonic-crystal surface-emitting laser.

5.
ACS Omega ; 5(35): 22163-22170, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923774

RESUMO

Due to its good physical properties, softened wood (SW) has been widely used in the fields of home furnishing, interior decoration, and construction, such as decorative panels, softened wood flooring, wooden bricks, and softened wood furniture. However, traditional methods of wood softening often fail to meet the requirements of enterprises for softening wood. Here, inspired by the research related to wood softening, we propose a method for directly preparing softened wood (SW) using a new type of "ionic liquid" eutectic solvent (DES) owing to its low cost, environmental friendliness, recyclability, and other advantages. To improve the adaptability of the study, a total of five types of DESs were designed and prepared, and by the microwave-assisted DES treatment of natural wood (NW), the purpose of softening wood was achieved. Then, we conducted a series of comparative analyses and performance tests on NW and SW, including microscopic images, chemical composition, color difference, and mechanical properties. The results show that the wood softened by DES has become a highly porous network structure, and partial lignin, hemicellulose, and cellulose have been removed. At the same time, different degrees of color change, lower hardness, excellent mechanical flexibility, and a compression rebound rate of up to about 90% are obtained. The above-mentioned various properties of SW provide great potential for its application in wood products.

6.
Opt Lett ; 45(6): 1587-1590, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32164023

RESUMO

We report a method to generate angularly polarized vector beams with a topological charge of one by rotating air holes to form two-dimensional photonic crystal (PC) cavities. The mode volume and resonance wavelength of these cavities are tuned from ${0.33}{(\lambda /n)^3}$0.33(λ/n)3 to ${12}{(\lambda /n)^3}$12(λ/n)3 and in a wide range of 400 nm, respectively, by controlling the range of fixed air holes near the center of the structure. As a benefit, the half-maximum divergence angles of the vector beam can be widely changed from 90° to $\sim{60}^\circ $∼60∘. By adjusting the shift direction of the air holes in the PC cavities, optical vector beams with different far-field morphology are obtained. The scheme provides not only an alternative method to generate optical vector beams, but also an effective strategy to control far-field morphology and polarizations, which holds promising applications such as optical microscopy and micro-manipulation.

7.
Nat Commun ; 10(1): 434, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683898

RESUMO

Novel classical wave phenomenon analogs of the quantum spin Hall effect are mostly based on the construction of pseudo-spins. Here we show that the non-trivial topology of a system can also be realized using orbital angular momentum through a coupling between the angular momentum and the wave vector. The idea is illustrated with a tight-binding model and experimentally demonstrated with a transmission line network. We show experimentally that even a very small network cluster exhibits angular momentum-dependent one-way topological edge states, and their properties can be described in terms of local Chern numbers. Our work provides a new mechanism to realize counterparts of the quantum spin Hall effect in classical waves and may offer insights for other systems.

8.
Opt Express ; 26(8): 10315-10325, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715970

RESUMO

The symmetry dependences of plasmon excitation modes are studied in 3D silver nanorod trimers. The degenerate plasmon modes split into chiral modes by breaking the inversion and mirror symmetry of the nanorod trimer through translation and/or rotation of the middle rod. With a translation operation, successive evolution of the circular dichroism (CD) spectrum can be achieved through gradual breaking of the inversion symmetry. An additional rotation operation produces even dramatic spectral changes due to breaking a quasi-mirror symmetry resulted from the same angular distance of the middle rod to the top and bottom rods. Especially, pairs of new chiral modes can be excited due to the contact of the middle rod with the top-bottom rod pair. The spectral changes in the simulations, which are also demonstrated experimentally, envision the 3D chiral nanorod trimer system as plasmon ruler for spatial configuration retrieval and dynamic bio-process analysis at the single molecule level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...