Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 663: 1028-1034, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452544

RESUMO

Aqueous ammonium-ion capacitors (AAICs) are promising for large-scale energy storage owing to low cost and inherent safety, while their practical applications are suffered from performance under extreme environment. Low ion conductivity and high viscosity, as well as freezing of the electrolyte, are the main issues for the electrochemical performance failure at low temperatures. In this work, the AAICs were assembled with commercial carbon electrodes and antifreeze electrolyte, where the electrolyte with a freezing point lower than -115 °C is developed by using Ethylenediamine (EDA) as an additive with a volume ratio of 50 % to an aqueous solution of 0.5 M NH4Cl. This antifreeze electrolyte displays a superior ionic conductivity of 8.58 mS cm-1 and a weaker viscosity of 8.16 mPa s at low temperatures. Furthermore, the spectroscopic investigations and molecular dynamics (MD) simulations demonstrate that the addition of EDA can break the hydrogen bonds of water molecules and modulate the solvation structure. Therefore, the assembled AAICs with electrolytes of 0.5 M NH4Cl (50 %-EDA) could be operated at wide-temperature conditions steadily, exhibiting excellent capacity, rate performance and good cycling stability. This work provides a simple and effective strategy for wide-temperature energy storage devices.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38035388

RESUMO

Iron single-atom catalysts (Fe SACs) hold great promise for peroxymonosulfate (PMS) activation and degradation of organic pollutants in wastewater. However, insights into crucial catalytic sites and activation mechanisms of biochar-based Fe SACs for PMS remain a challenge. Herein, cotton stalk-derived biochar-based Fe SACs (Fe SACs-BC) with an asymmetric Fe-N/O-C configuration were prepared, and their PMS activation and acid orange 7 (AO7) degradation mechanisms were investigated. The results showed that the removal efficiency of the Fe SACs-BC catalyst with Fe-N3O-C configuration for AO7 and other five investigated organic dyes reached 95-99% within 15 min. The EPR spectrums, quenching experiments, electrochemical analysis, masking experiments, XPS, and theoretical calculations indicated that degradations of organic dyes were dominated by singlet oxygen, which was generated by direct PMS conversion at the electron-deficient carbon and iron sites in the Fe-N3O-C configuration. The Fe SACs-BC/PMS exhibited high removal efficiency and strong tolerance in different water matrices with a wide pH range, various coexisting anions and interfering substances, showing great potential and applicability for efficient treatment of actual textile wastewaters.

3.
ACS Appl Mater Interfaces ; 15(34): 40529-40537, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37603412

RESUMO

Designing high-performance carbonous electrodes for capacitive deionization with remarkable salt adsorption capacity (SAC) and outstanding salt adsorption rate (SAR) is quite significant yet challenging for brackish water desalination. Herein, a unique gelation-assisted strategy is proposed to tailor two-dimensional B and N-enriched carbon nanosheets (BNCTs) for efficient desalination. During the synthesis process, boric acid and polyvinyl alcohol were cross-linked to form a gelation template for the carbon precursor (polyethyleneimine), which endows BNCTs with ultrathin thickness (∼2 nm) and ultrahigh heteroatoms doping level (14.5 atom % of B and 14.8 atom % of N) after freeze-drying and pyrolysis. The laminar B, N-doped carbon enables an excellent SAC of 42.5 mg g-1 and fast SAR of 4.25 mg g-1 min-1 in 500 mg L-1 NaCl solution, both of which are four times as much as those of activated carbon. Moreover, the density functional theory (DFT) calculation demonstrates that the dual doping of B and N atoms firmly enhances the adsorption capacity of Na+, leading to a prominent chemical SAC for brackish water. This work paves a new way to rationally integrate both conducive surface morphology and systematic effects of B, N doping to construct high-efficiency carbonaceous electrodes for desalination.

4.
J Colloid Interface Sci ; 649: 97-106, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37339562

RESUMO

Porous carbons have attracted great attention in capacitive deionization (CDI), benefiting from their high surface areas and abundant adsorption sites. However, the sluggish adsorption rate and poor cycling stability of carbons are still concerns, which are caused by the insufficient ion-accessible networks and the side reactions (the co-ion repulsion and oxidative corrosion). Herein, inspired by the blood vessels in organisms, mesoporous hollow carbon fibers (HCF) were successfully synthesized via a template assisted coaxial electrospinning strategy. Subsequently, the surface charge of HCF was modified by various amino acids (arginine (HCF-Arg) and aspartic acid (HCF-Asp)). Combining structure design and surface modulation, these freestanding HCFs present enhanced desalination rate and stability, in which the hierarchal vasculature facilitates electron/ion transport, and the functionalized surface suppresses the side reactions. Impressively, when HCF-Asp and HCF-Arg serve as cathode and anode respectively, the asymmetric CDI device provides an excellent salt adsorption capacity of 45.6 mg g-1, a fast salt adsorption rate of 14.0 mg g-1 min-1 and a superior cycling stability up to 80 cycles. In short, this work evidenced an integrated strategy to exploiting carbon materials with outstanding capacity and stability for high-performance capacitive deionization.

5.
Mikrochim Acta ; 190(4): 151, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36952093

RESUMO

The development of molecularly imprinted monolith (MIM) for pipette-tip solid-phase extraction (PT-SPE) for sample pretreatment is challenging . In this work, a wax-based molecularly imprinted monolith (WMIM) was successfully prepared with a hybrid method by integration of the traditional packing SPE column and MIM, including preparation of the salt column inside the pipette, polymerization of wax-based imprinted column (WIC) outside the pipette, and immobilization of WIC inside the pipette tip. To ensure the penetration of samples and solvents during the PT-SPE, micrometer-range interconnected macropores were tailor-made via the salt-template sacrifice method. For the production of high affinity imprinted sites within the WIC, octadecanoic acid was used as functional monomer in the paraffin matrix. In terms of the adsorption property, the synthesized WIC exhibited a specific affinity to cardiovascular drugs, with an imprinting factor (IF) of 4.8 for the target analyte. Moreover, the WMIM-based PT-SPE was coupled with fluorescence spectrophotometry for the target propranolol determination  (the excitation and emission wavelengths were 294 nm and 343 nm, respectively). This analytical method showed high recovery of target detection in different real samples (R > 90%), good sensitivity, and accuracy (R2 = 0.99, LOD = 0.03 ng mL-1). We believe this work could provide a significant contribution  for the fabrication of MIM and promote an emerging trend of developing elution-free materials for sample pretreatment.


Assuntos
Impressão Molecular , Impressão Molecular/métodos , Polímeros , Cromatografia Líquida de Alta Pressão , Extração em Fase Sólida/métodos , Solventes
6.
Small ; 19(20): e2300440, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36808688

RESUMO

Nitrogen doping is an effective strategy to improve potassium ion storage of carbon electrodes via the creation of adsorption sites. However, various undesired defects are often uncontrollably generated during the doping process, limiting doping effect on capacity enhancement and deteriorating the electric conductivity. Herein, boron element is additionally introduced to construct 3D interconnected B, N co-doped carbon nanosheets to remedy these adverse effects. This work demonstrates that boron incorporation preferentially converts pyrrolic N species into BN sites with lower adsorption energy barrier, further enhancing the capacity of B, N co-doped carbon. Meanwhile, the electric conductivity is modulated via the conjugation effect between the electron-rich N and electron-deficient B, accelerating the charge-transfer kinetics of potassium ions. The optimized samples deliver a high specific capacity, high rate capability, and long-term cyclic stability (532.1 mAh g-1 at 0.05 A g-1 , 162.6 mAh g-1 at 2 A g-1 over 8000 cycles). Furthermore, hybrid capacitors using the B, N co-doped carbon anode deliver a high energy and power density with excellent cycle life. This study demonstrates a promising approach using BN sites for adsorptive capacity and electric conductivity enhancement in carbon materials for electrochemical energy storage applications.

7.
J Hazard Mater ; 443(Pt B): 130254, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36356522

RESUMO

Antibiotic resistance has been a worsening global concern and selective elimination of antibiotic-resistant bacteria (ARB) while retaining the co-existed beneficial bacteria has been essential in environmental protection, which having attracted considerable interest. In this work, by integrating the whole cell imprinting and epitope imprinting strategy, magnetic bacterial imprinted polymers (BIPs) towards ARB were synthesized with interfacial biomimetic mineralization followed by a screening process. The binding data showed that the BIPs owned highly specific affinity towards the target bacteria. Taking advantage of this specific binding ability of BIPs, a two-step selective antimicrobial approach was developed. Remarkably, the BIP nanoantibiotics (nAbts) could efficiently destroy ARB without harming the beneficial bacteria. In comparison with the non-bacterial imprinted polymers, the biocompatible BIP nAbts showed a 12.5-fold increase in the survival percentage for the beneficial bacteria in wastewater. To the best of our knowledge, this is the first time that bacterial imprinting via interfacial biomimetic mineralization was developed, and also the first report of killing ARB without harming the beneficial bacteria in wastewater. We believe that this strategy provides a new insight into the design of novel affinity materials for the selective elimination of ARB in biological treatment for environmental protection.


Assuntos
Biomimética , Águas Residuárias , Águas Residuárias/microbiologia , Antagonistas de Receptores de Angiotensina , Antibacterianos/farmacologia , Inibidores da Enzima Conversora de Angiotensina , Bactérias , Polímeros
8.
PLoS One ; 16(11): e0259028, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34723985

RESUMO

Searching similar pictures for a given picture is an important task in numerous applications, including image recommendation system, image classification and image retrieval. Previous studies mainly focused on the similarities of content, which measures similarities based on visual features, such as color and shape, and few of them pay enough attention to semantics. In this paper, we propose a link-based semantic similarity search method, namely PictureSim, for effectively searching similar pictures by building a picture-tag network. The picture-tag network is built by "description" relationships between pictures and tags, in which tags and pictures are treated as nodes, and relationships between pictures and tags are regarded as edges. Then we design a TF-IDF-based model to removes the noisy links, so the traverses of these links can be reduced. We observe that "similar pictures contain similar tags, and similar tags describe similar pictures", which is consistent with the intuition of the SimRank. Consequently, we utilize the SimRank algorithm to compute the similarity scores between pictures. Compared with content-based methods, PictureSim could effectively search similar pictures semantically. Extensive experiments on real datasets to demonstrate the effectiveness and efficiency of the PictureSim.


Assuntos
Reconhecimento Visual de Modelos , Semântica , Simulação por Computador , Bases de Dados como Assunto , Fatores de Tempo
9.
Anal Chem ; 93(33): 11488-11496, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34383461

RESUMO

Polymerase chain reaction (PCR) technology has become the cornerstone of DNA analysis. However, special samples (e.g., forensic samples, soil, food, and mineral medicine) may contain powerful PCR inhibitors. High levels of inhibitors can hardly be sufficiently removed by conventional DNA extraction approaches and may result in the complete failure of PCR. In this work, the removal of PCR inhibitors by electromembrane extraction (EME) was investigated for the first time. To demonstrate the universality of the approach, EME formats with and without supported membranes (termed parallel-EME and µ-EME, respectively) were employed, and both anionic [humic acid (HA)] and cationic (Ca2+) PCR inhibitors were used as models. During EME, charged inhibitors in the sample migrate into the liquid membrane in the presence of an electric field and might further leech into the waste solution, while PCR analytes remain in the sample. After EME, the clearance values for HA at 0.2 and 2.5 mg mL-1 were 94 and 85%, respectively, and that for Ca2+ (275 mM) was 63%. Forensic PCR-short tandem repeat (PCR-STR) genotyping showed that EME significantly reduced the interference by HA in PCR-STR analysis and displayed a higher HA purge capability compared to existing methods. Furthermore, by combining EME with liquid-liquid extraction or solid-phase extraction, satisfactory STR profiles were obtained from HA-rich blood samples. In addition, false-negative reports of bacterial detection in mineral medicine and shrimps were avoided after the removal of Ca2+ by µ-EME. Our research demonstrates the great potential of EME for the purification of DNA samples containing high-level PCR inhibitors and opens up a new application direction for EME.


Assuntos
Eletricidade , Membranas Artificiais , Ânions , Cátions , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...