Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 72(22): 7729-7742, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34397079

RESUMO

In soybean, heterosis achieved through the three-line system has been gradually applied in breeding to increase yield, but the underlying molecular mechanism remains unknown. We conducted a genetic analysis using the pollen fertility of offspring of the cross NJCMS1A×NJCMS1C. All the pollen of F1 plants was semi-sterile; in F2, the ratio of pollen-fertile plants to pollen-semi-sterile plants was 208:189. This result indicates that NJCMS1A is gametophyte sterile, and the fertility restoration of NJCMS1C to NJCMS1A is a quality trait controlled by a single gene locus. Using bulked segregant analysis, the fertility restorer gene Rf in NJCMS1C was located on chromosome 16 between the markers BARCSOYSSR_16_1067 and BARCSOYSSR_16_1078. Sequence analysis of genes in that region showed that GmPPR576 was non-functional in rf cultivars. GmPPR576 has one functional allele in Rf cultivars but three non-functional alleles in rf cultivars. Phylogenetic analysis showed that the GmPPR576 locus evolved rapidly with the presence of male-sterile cytoplasm. GmPPR576 belongs to the RFL fertility restorer gene family and is targeted to the mitochondria. GmPPR576 was knocked out in soybean N8855 using CRISPR/Cas9. The T1 plants showed sterile pollen, and T2 plants produced few pods at maturity. The results indicate that GmPPR576 is the fertility restorer gene of NJCMS1A.


Assuntos
Glycine max , Infertilidade das Plantas , Citoplasma , Fertilidade/genética , Filogenia , Infertilidade das Plantas/genética , Glycine max/genética
2.
Funct Integr Genomics ; 21(1): 43-57, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33404916

RESUMO

In soybean, only one mitochondrial genome of cultispecies has been completely obtained. To explore the effect of mitochondrial genome on soybean cytoplasmic male sterility (CMS), two CMS lines and three maintainer lines were used for sequencing. Comparative analysis showed that mitochondrial genome of the CMS line was more compact than that of its maintainer line, but genes were highly conserved. Conserved and unique sequence coexisted in the genomes. Mitochondrial genomes contained different sequence lengths and copy numbers of repeats between CMS line and maintainer line. Large and short repeats mediated intramolecular and intermolecular recombination in mitochondria. Unique sequences and genes were also involved in recombination process and constituted a complex network. orf178 and orf261 were identified as CMS-associated candidate genes. They had sequence characteristics of reported CMS genes in other crops and could be transcribed in CMS lines but not in maintainer lines. This report reveals mitochondrial genome of soybean CMS lines and compares complete mitochondrial sequence between CMS lines and their maintainer lines. The information will be helpful in further understanding the characteristics of soybean mitochondrial genome and the mechanism underlying CMS.


Assuntos
Genoma Mitocondrial , Glycine max/genética , Infertilidade das Plantas , Sequência Conservada , Genoma de Planta , Fases de Leitura Aberta , Recombinação Genética , Seleção Artificial , Glycine max/fisiologia
3.
Interdiscip Sci ; 12(4): 499-514, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32929667

RESUMO

BACKGROUND: Variations in the human genome have been studied extensively. However, little is known about the role of micro-inversions (MIs), generally defined as small (< 100 bp) inversions, in human evolution, diversity, and health. Depicting the pattern of MIs among diverse populations is critical for interpreting human evolutionary history and obtaining insight into genetic diseases. RESULTS: In this paper, we explored the distribution of MIs in genomes from 26 human populations and 7 nonhuman primate genomes and analyzed the phylogenetic structure of the 26 human populations based on the MIs. We further investigated the functions of the MIs located within genes associated with human health. With hg19 as the reference genome, we detected 6968 MIs among the 1937 human samples and 24,476 MIs among the 7 nonhuman primate genomes. The analyses of MIs in human genomes showed that the MIs were rarely located in exonic regions. Nonhuman primates and human populations shared only 82 inverted alleles, and Africans had the most inverted alleles in common with nonhuman primates, which was consistent with the "Out of Africa" hypothesis. The clustering of MIs among the human populations also coincided with human migration history and ancestral lineages. CONCLUSIONS: We propose that MIs are potential evolutionary markers for investigating population dynamics. Our results revealed the diversity of MIs in human populations and showed that they are essential to construct human population relationships and have a potential effect on human health.


Assuntos
Evolução Molecular , Genética Populacional , Animais , Variação Genética , Humanos , Macaca mulatta , Filogenia
4.
Front Genet ; 11: 900, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903372

RESUMO

Nanopore sequencing is regarded as one of the most promising third-generation sequencing (TGS) technologies. Since 2014, Oxford Nanopore Technologies (ONT) has developed a series of devices based on nanopore sequencing to produce very long reads, with an expected impact on genomics. However, the nanopore sequencing reads are susceptible to a fairly high error rate owing to the difficulty in identifying the DNA bases from the complex electrical signals. Although several basecalling tools have been developed for nanopore sequencing over the past years, it is still challenging to correct the sequences after applying the basecalling procedure. In this study, we developed an open-source DNA basecalling reviser, NanoReviser, based on a deep learning algorithm to correct the basecalling errors introduced by current basecallers provided by default. In our module, we re-segmented the raw electrical signals based on the basecalled sequences provided by the default basecallers. By employing convolution neural networks (CNNs) and bidirectional long short-term memory (Bi-LSTM) networks, we took advantage of the information from the raw electrical signals and the basecalled sequences from the basecallers. Our results showed NanoReviser, as a post-basecalling reviser, significantly improving the basecalling quality. After being trained on standard ONT sequencing reads from public E. coli and human NA12878 datasets, NanoReviser reduced the sequencing error rate by over 5% for both the E. coli dataset and the human dataset. The performance of NanoReviser was found to be better than those of all current basecalling tools. Furthermore, we analyzed the modified bases of the E. coli dataset and added the methylation information to train our module. With the methylation annotation, NanoReviser reduced the error rate by 7% for the E. coli dataset and specifically reduced the error rate by over 10% for the regions of the sequence rich in methylated bases. To the best of our knowledge, NanoReviser is the first post-processing tool after basecalling to accurately correct the nanopore sequences without the time-consuming procedure of building the consensus sequence. The NanoReviser package is freely available at https://github.com/pkubioinformatics/NanoReviser.

5.
BMC Nephrol ; 20(1): 244, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31272400

RESUMO

BACKGROUND: IgA nephropathy (IgAN) is the most common glomerulonephritis worldwide and is an important cause of end-stage renal disease (ESRD). Exploring novel biomarkers is necessary for predicting the disease activity and progression of IgAN patients. The present study sought to investigate the value of serum C4 for predicting the prognosis of IgAN patients. METHODS: The primary endpoint of this retrospective study was a composite event of either a ≥ 50% reduction in estimated glomerular filtration rate (eGFR) or end-stage renal disease (ESRD) or death. The associations between serum C4 and clinicopathological parameters and prognosis of this cohort of IgAN patients were evaluated. RESULTS: The present study included 1356 IgAN patients. Serum C4 levels correlated significantly with clinical prognostic factors. Serum C4 levels correlated positively with urinary protein excretion (r = 0.307, P < 0.001), and negatively correlated with estimated glomerular filtration rate (r = - 0.281, P < 0.001). Furthermore, serum C4 levels increased with aggravation of tubulointerstitial injury, crescents and ratios of global sclerosis (all P < 0.05). Prognostic analyses with the Cox proportional hazards regression model and Kaplan-Meier survival curves further identified serum C4 as an independent risk factor for the prognosis of IgAN. CONCLUSIONS: The present study identified serum C4 as a useful predictor for the prognosis of IgAN patients. The mechanism of the trend of serum C4 in IgAN needs to be illustrated in further research.


Assuntos
Complemento C4/metabolismo , Glomerulonefrite por IGA/sangue , Glomerulonefrite por IGA/diagnóstico , Biomarcadores/sangue , Estudos de Coortes , Feminino , Seguimentos , Taxa de Filtração Glomerular/fisiologia , Humanos , Masculino , Prognóstico , Estudos Retrospectivos
6.
Genomics Proteomics Bioinformatics ; 17(1): 91-105, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-31026577

RESUMO

Exploring the mechanisms of maintaining microbial community structure is important to understand biofilm development or microbiota dysbiosis. In this paper, we propose a functional gene-based composition prediction (FCP) model to predict the population structure composition within a microbial community. The model predicts the community composition well in both a low-complexity community as acid mine drainage (AMD) microbiota, and a complex community as human gut microbiota. Furthermore, we define community structure shaping (CSS) genes as functional genes crucial for shaping the microbial community. We have identified CSS genes in AMD and human gut microbiota samples with FCP model and find that CSS genes change with the conditions. Compared to essential genes for microbes, CSS genes are significantly enriched in the genes involved in mobile genetic elements, cell motility, and defense mechanisms, indicating that the functions of CSS genes are focused on communication and strategies in response to the environment factors. We further find that it is the minority, rather than the majority, which contributes to maintaining community structure. Compared to health control samples, we find that some functional genes associated with metabolism of amino acids, nucleotides, and lipopolysaccharide are more likely to be CSS genes in the disease group. CSS genes may help us to understand critical cellular processes and be useful in seeking addable gene circuitries to maintain artificial self-sustainable communities. Our study suggests that functional genes are important to the assembly of microbial communities.


Assuntos
Genes Microbianos , Microbiota/genética , Microbioma Gastrointestinal/genética , Humanos , Mineração , Modelos Genéticos , Poluição da Água
7.
Bioinformatics ; 34(22): 3825-3834, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29850816

RESUMO

Motivation: To characterize long non-coding RNAs (lncRNAs), both identifying and functionally annotating them are essential to be addressed. Moreover, a comprehensive construction for lncRNA annotation is desired to facilitate the research in the field. Results: We present LncADeep, a novel lncRNA identification and functional annotation tool. For lncRNA identification, LncADeep integrates intrinsic and homology features into a deep belief network and constructs models targeting both full- and partial-length transcripts. For functional annotation, LncADeep predicts a lncRNA's interacting proteins based on deep neural networks, using both sequence and structure information. Furthermore, LncADeep integrates KEGG and Reactome pathway enrichment analysis and functional module detection with the predicted interacting proteins, and provides the enriched pathways and functional modules as functional annotations for lncRNAs. Test results show that LncADeep outperforms state-of-the-art tools, both for lncRNA identification and lncRNA-protein interaction prediction, and then presents a functional interpretation. We expect that LncADeep can contribute to identifying and annotating novel lncRNAs. Availability and implementation: LncADeep is freely available for academic use at http://cqb.pku.edu.cn/ZhuLab/lncadeep/ and https://github.com/cyang235/LncADeep/. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , RNA Longo não Codificante/genética , Anotação de Sequência Molecular , Redes Neurais de Computação
8.
BMC Bioinformatics ; 18(1): 434, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28969605

RESUMO

BACKGROUND: During the past decade, the development of high throughput nucleic sequencing and mass spectrometry analysis techniques have enabled the characterization of microbial communities through metagenomics, metatranscriptomics, metaproteomics and metabolomics data. To reveal the diversity of microbial communities and interactions between living conditions and microbes, it is necessary to introduce comparative analysis based upon integration of all four types of data mentioned above. Comparative meta-omics, especially comparative metageomics, has been established as a routine process to highlight the significant differences in taxon composition and functional gene abundance among microbiota samples. Meanwhile, biologists are increasingly concerning about the correlations between meta-omics features and environmental factors, which may further decipher the adaptation strategy of a microbial community. RESULTS: We developed a graphical comprehensive analysis software named MetaComp comprising a series of statistical analysis approaches with visualized results for metagenomics and other meta-omics data comparison. This software is capable to read files generated by a variety of upstream programs. After data loading, analyses such as multivariate statistics, hypothesis testing of two-sample, multi-sample as well as two-group sample and a novel function-regression analysis of environmental factors are offered. Here, regression analysis regards meta-omic features as independent variable and environmental factors as dependent variables. Moreover, MetaComp is capable to automatically choose an appropriate two-group sample test based upon the traits of input abundance profiles. We further evaluate the performance of its choice, and exhibit applications for metagenomics, metaproteomics and metabolomics samples. CONCLUSION: MetaComp, an integrative software capable for applying to all meta-omics data, originally distills the influence of living environment on microbial community by regression analysis. Moreover, since the automatically chosen two-group sample test is verified to be outperformed, MetaComp is friendly to users without adequate statistical training. These improvements are aiming to overcome the new challenges under big data era for all meta-omics data. MetaComp is available at: http://cqb.pku.edu.cn/ZhuLab/MetaComp/ and https://github.com/pzhaipku/MetaComp/ .


Assuntos
Metagenômica/métodos , Software , Interpretação Estatística de Dados , Perfilação da Expressão Gênica/métodos , Genes Microbianos , Humanos , Metabolômica/métodos , Microbiota/genética , Proteômica/métodos
9.
BMC Genomics ; 18(1): 596, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28806912

RESUMO

BACKGROUND: DNA methylation is an important epigenetic modification. It can regulate the expression of many key genes without changing the primary structure of the genomic DNA, and plays a vital role in the growth and development of the organism. The genome-wide DNA methylation profile of the cytoplasmic male sterile (CMS) line in soybean has not been reported so far. RESULTS: In this study, genome-wide comparative analysis of DNA methylation between soybean CMS line NJCMS5A and its maintainer NJCMS5B was conducted by whole-genome bisulfite sequencing. The results showed 3527 differentially methylated regions (DMRs) and 485 differentially methylated genes (DMGs), including 353 high-credible methylated genes, 56 methylated genes coding unknown protein and 76 novel methylated genes with no known function were identified. Among them, 25 DMRs were further validated that the genome-wide DNA methylation data were reliable through bisulfite treatment, and 9 DMRs were confirmed the relationship between DNA methylation and gene expression by qRT-PCR. Finally, 8 key DMGs possibly associated with soybean CMS were identified. CONCLUSIONS: Genome-wide DNA methylation profile of the soybean CMS line NJCMS5A and its maintainer NJCMS5B was obtained for the first time. Several specific DMGs which participated in pollen and flower development were further identified to be probably associated with soybean CMS. This study will contribute to further understanding of the molecular mechanism behind soybean CMS.


Assuntos
Citoplasma/metabolismo , Metilação de DNA , Genômica , Glycine max/citologia , Glycine max/genética , Infertilidade das Plantas/genética , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas/genética , Anotação de Sequência Molecular , Especificidade da Espécie , Sequenciamento Completo do Genoma
10.
J Proteomics ; 138: 72-82, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26921830

RESUMO

To further elucidate the molecular mechanism of cytoplasmic male sterility (CMS) in soybean, a differential proteomic analysis was completed between the CMS line NJCMS1A and its maintainer NJCMS1B using iTRAQ-based strategy. As a result, 180 differential abundance proteins (DAPs) were identified, of which, 60 were down-regulated and 120 were up-regulated in NJCMS1A compared with NJCMS1B. Bioinformatic analysis showed that 167 DAPs were annotated in 41 Gene Ontology functional groups, 106 DAPs were classified into 20 clusters of orthologous groups of protein categories, and 128 DAPs were enrichment in 53 KEGG pathways. Fifteen differential level proteins/genes with the same expression pattern were identified in the further conjoint analysis of DAPs and the previously reported differential expression genes. Moreover, multiple reaction monitoring test, qRT-PCR analysis and enzyme activity assay validated that the iTRAQ results were reliable. Based on functional analysis of DAPs, we concluded that male sterility in NJCMS1A might be related to insufficiencies in energy supply, unbalance of protein synthesis and degradation, disruption of flavonoid synthesis, programmed cell death, abnormalities of substance metabolism, etc. These results might facilitate our understanding of the molecular mechanisms behind CMS in soybean. BIOLOGICAL SIGNIFICANCE: Soybean is an important global crop that provides protein and oil. Heterosis is a significantly potential approach to increase the yield of soybean. Cytoplasmic male sterility (CMS) plays a vital role in the production of hybrid seeds. However, the genetic and molecular mechanisms of male sterility in soybean still need to be further elucidated. In the present paper, a differential proteomic analysis was carried out and the results showed that several key proteins involved in key pathways were associated with male sterility in soybean. This work provides a new insight to understand the genetic and molecular mechanisms underlying CMS in soybean.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/metabolismo , Infertilidade das Plantas , Proteínas de Plantas/biossíntese , Proteômica
11.
PLoS Genet ; 10(10): e1004664, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25330213

RESUMO

Ethylene has been regarded as a stress hormone to regulate myriad stress responses. Salinity stress is one of the most serious abiotic stresses limiting plant growth and development. But how ethylene signaling is involved in plant response to salt stress is poorly understood. Here we showed that Arabidopsis plants pretreated with ethylene exhibited enhanced tolerance to salt stress. Gain- and loss-of-function studies demonstrated that EIN3 (ETHYLENE INSENSITIVE 3) and EIL1 (EIN3-LIKE 1), two ethylene-activated transcription factors, are necessary and sufficient for the enhanced salt tolerance. High salinity induced the accumulation of EIN3/EIL1 proteins by promoting the proteasomal degradation of two EIN3/EIL1-targeting F-box proteins, EBF1 and EBF2, in an EIN2-independent manner. Whole-genome transcriptome analysis identified a list of SIED (Salt-Induced and EIN3/EIL1-Dependent) genes that participate in salt stress responses, including several genes encoding reactive oxygen species (ROS) scavengers. We performed a genetic screen for ein3 eil1-like salt-hypersensitive mutants and identified 5 EIN3 direct target genes including a previously unknown gene, SIED1 (At5g22270), which encodes a 93-amino acid polypeptide involved in ROS dismissal. We also found that activation of EIN3 increased peroxidase (POD) activity through the direct transcriptional regulation of PODs expression. Accordingly, ethylene pretreatment or EIN3 activation was able to preclude excess ROS accumulation and increased tolerance to salt stress. Taken together, our study provides new insights into the molecular action of ethylene signaling to enhance plant salt tolerance, and elucidates the transcriptional network of EIN3 in salt stress response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas Nucleares/metabolismo , Tolerância ao Sal , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA , Etilenos/metabolismo , Etilenos/farmacologia , Proteínas F-Box/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/genética , Peroxidases/metabolismo , Plantas Geneticamente Modificadas , Estabilidade Proteica , Espécies Reativas de Oxigênio , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...