Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-39000843

RESUMO

In this paper, we investigate a cell-free massive multiple-input multiple-output (CF-mMIMO) system with a reconfigurable intelligent surface (RIS) carried by an unmanned aerial vehicle (UAV), called the UAV-RIS. Compared with the RIS located on the ground, the UAV-RIS has a wider coverage that can reflect all signals from access points (APs) and user equipment (UE). By correlating the UAV location with the Rician K-factor, we derive a closed-form approximation of the UE achievable downlink rate. Based on this, we obtain the optimal UAV location and RIS phase shift that can maximize the UE sum rate through an alternating optimization method. Simulation results have verified the accuracy of the derived approximation and shown that the UE sum rate can be significantly improved with the obtained optimal UAV location and RIS phase shift. Moreover, we find that with a uniform UE distribution, the UAV-RIS should fly to the center of the system, while with an uneven UE distribution, the UAV-RIS should fly above the area where UEs are gathered. In addition, we also design the best trajectory for the UAV-RIS to fly from its initial location to the optimal destination while maintaining the maximum UE sum rate per time slot during the flight.

2.
Sensors (Basel) ; 22(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36501743

RESUMO

Dynamic service orchestration is becoming more and more necessary as IoT and edge computing technologies continue to advance due to the flexibility and diversity of services. With the surge in the number of edge devices and the increase in data volume of IoT scenarios, there are higher requirements for the transmission security of privacy information from each edge device and the processing efficiency of SFC orchestration. This paper proposes a kind of dynamic SFC orchestration security algorithm applicable to EC-IoT scenarios based on the federated learning framework, combined with a block coordinated descent approach and the quadratic penalty algorithm to achieve communication efficiency and data privacy protection. A deep reinforcement learning algorithm is used to simultaneously adapt the SFC orchestration method in order to dynamically observe environmental changes and decrease end-to-end delay. The experimental results show that compared with the existing dynamic SFC orchestration algorithms, the proposed algorithm can achieve better convergence and latency performance under the condition of privacy protection; the overall latency is reduced by about 33%, and the overall convergence speed is improved by about 9%, which not only achieves the security of data privacy protection of edge computing nodes, but also meets the requirements of dynamic SFC orchestration.


Assuntos
Algoritmos , Privacidade , Comunicação , Registros , Tecnologia
3.
Sensors (Basel) ; 21(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918009

RESUMO

This paper concentrates on the rate analysis and optimization for a downlink cell-free massive multi-input multi-output (MIMO) system with mixed digital-to-analog converters (DACs), where some of the access points (APs) use perfect-resolution DACs, while the others exploit low-resolution DACs to reduce hardware cost and power consumption. By using the additive quantization noise model (AQNM) and conjugate beamforming receiver, a tight closed-form rate expression is derived based on the standard minimum mean square error (MMSE) channel estimate technique. With the derived result, the effects of the number of APs, the downlink transmitted power, the number of DAC bits, and the proportion of the perfect DACs in the mixed-DAC architecture are conducted. We find that the achievable sum rate can be improved by increasing the proportion of the perfect DACs and deploying more APs. Besides, when the DAC resolution arrives at 5-bit, the system performance will invariably approach the case of perfect DACs, which indicates that we can use 5-bit DACs to substitute the perfect DACs. Thus, it can greatly reduce system hardware cost and power consumption. Finally, the weighted max-min power allocation scheme is proposed to guarantee that the users with high priority have a higher rate, while the others are served with the same rate. The simulation results prove the proposed scheme can be effectively solved by the bisection algorithm.

4.
Nanoscale Res Lett ; 10(1): 942, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26055477

RESUMO

Nanoparticles are regarded as promising carriers for targeted drug delivery and imaging probes. A fundamental understanding of the dynamics of polymeric nanoparticle targeting to receptor-coated vascular surfaces is therefore of great importance to enhance the design of nanoparticles toward improving binding ability. Although the effects of particle size and shear flow on the binding of nanoparticles to a vessel wall have been studied at the particulate level, a computational model to investigate the details of the binding process at the molecular level has not been developed. In this research, dissipative particle dynamics simulations are used to study nanoparticles with diameters of several nanometers binding to receptors on vascular surfaces under shear flow. Interestingly, shear flow velocities ranging from 0 to 2000 s(-1) had no effect on the attachment process of nanoparticles very close to the capillary wall. Increased binding energy between the ligands and wall caused a corresponding linear increase in bonding ability. Our simulations also indicated that larger nanoparticles and those of rod shape with a higher aspect ratio have better binding ability than those of smaller size or rounder shape.

5.
ScientificWorldJournal ; 2014: 470324, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25247205

RESUMO

In wireless two-way (TW) relay channels, denoise-and-forward (DNF) network coding (NC) is a promising technique to achieve spectral efficiency. However, unsuccessful detection at relay severely deteriorates the diversity gain, as well as end-to-end pairwise error probability (PEP). To handle this issue, a novel joint cyclic redundancy code (CRC) check method (JCRC) is proposed in this paper by exploiting the property of two NC combined CRC codewords. Firstly, the detection probability bounds of the proposed method are derived to prove its efficiency in evaluating the reliability of NC signals. On the basis of that, three JCRC aided TW DNF NC schemes are proposed, and the corresponding PEP performances are also derived. Numerical results reveal that JCRC aided TW DNF NC has similar PEP comparing with the separate CRC one, while the complexity is reduced to half. Besides, it demonstrates that the proposed schemes outperform the conventional one with log-likelihood ratio threshold.


Assuntos
Redes de Comunicação de Computadores/tendências , Projetos de Pesquisa/tendências , Processamento de Sinais Assistido por Computador , Tecnologia sem Fio/tendências , Simulação por Computador/tendências , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...