Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33638985

RESUMO

Quantitative trait loci (QTL) hotspots (genomic locations enriched in QTL) are a common and notable feature when collecting many QTL for various traits in many areas of biological studies. The QTL hotspots are important and attractive since they are highly informative and may harbor genes for the quantitative traits. So far, the current statistical methods for QTL hotspot detection use either the individual-level data from the genetical genomics experiments or the summarized data from public QTL databases to proceed with the detection analysis. These methods may suffer from the problems of ignoring the correlation structure among traits, neglecting the magnitude of LOD scores for the QTL, or paying a very high computational cost, which often lead to the detection of excessive spurious hotspots, failure to discover biologically interesting hotspots composed of a small-to-moderate number of QTL with strong LOD scores, and computational intractability, respectively, during the detection process. In this article, we describe a statistical framework that can handle both types of data as well as address all the problems at a time for QTL hotspot detection. Our statistical framework directly operates on the QTL matrix and hence has a very cheap computational cost and is deployed to take advantage of the QTL mapping results for assisting the detection analysis. Two special devices, trait grouping and top γn,α profile, are introduced into the framework. The trait grouping attempts to group the traits controlled by closely linked or pleiotropic QTL together into the same trait groups and randomly allocates these QTL together across the genomic positions separately by trait group to account for the correlation structure among traits, so as to have the ability to obtain much stricter thresholds and dismiss spurious hotspots. The top γn,α profile is designed to outline the LOD-score pattern of QTL in a hotspot across the different hotspot architectures, so that it can serve to identify and characterize the types of QTL hotspots with varying sizes and LOD-score distributions. Real examples, numerical analysis, and simulation study are performed to validate our statistical framework, investigate the detection properties, and also compare with the current methods in QTL hotspot detection. The results demonstrate that the proposed statistical framework can effectively accommodate the correlation structure among traits, identify the types of hotspots, and still keep the notable features of easy implementation and fast computation for practical QTL hotspot detection.


Assuntos
Locos de Características Quantitativas , Mapeamento Cromossômico , Simulação por Computador , Escore Lod , Fenótipo
2.
G3 (Bethesda) ; 9(2): 439-452, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30541929

RESUMO

Genome-wide detection of quantitative trait loci (QTL) hotspots underlying variation in many molecular and phenotypic traits has been a key step in various biological studies since the QTL hotspots are highly informative and can be linked to the genes for the quantitative traits. Several statistical methods have been proposed to detect QTL hotspots. These hotspot detection methods rely heavily on permutation tests performed on summarized QTL data or individual-level data (with genotypes and phenotypes) from the genetical genomics experiments. In this article, we propose a statistical procedure for QTL hotspot detection by using the summarized QTL (interval) data collected in public web-accessible databases. First, a simple statistical method based on the uniform distribution is derived to convert the QTL interval data into the expected QTL frequency (EQF) matrix. And then, to account for the correlation structure among traits, the QTL for correlated traits are grouped together into the same categories to form a reduced EQF matrix. Furthermore, a permutation algorithm on the EQF elements or on the QTL intervals is developed to compute a sliding scale of EQF thresholds, ranging from strict to liberal, for assessing the significance of QTL hotspots. With grouping, much stricter thresholds can be obtained to avoid the detection of spurious hotspots. Real example analysis and simulation study are carried out to illustrate our procedure, evaluate the performances and compare with other methods. It shows that our procedure can control the genome-wide error rates at the target levels, provide appropriate thresholds for correlated data and is comparable to the methods using individual-level data in hotspot detection. Depending on the thresholds used, more than 100 hotspots are detected in GRAMENE rice database. We also perform a genome-wide comparative analysis of the detected hotspots and the known genes collected in the Rice Q-TARO database. The comparative analysis reveals that the hotspots and genes are conformable in the sense that they co-localize closely and are functionally related to relevant traits. Our statistical procedure can provide a framework for exploring the networks among QTL hotspots, genes and quantitative traits in biological studies. The R codes that produce both numerical and graphical outputs of QTL hotspot detection in the genome are available on the worldwide web http://www.stat.sinica.edu.tw/chkao/.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Oryza/genética , Locos de Características Quantitativas , Software , Bases de Dados Genéticas , Modelos Estatísticos , Taxa de Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...