Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virulence ; 15(1): 2367647, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38884466

RESUMO

The global surge in multidrug-resistant bacteria owing to antibiotic misuse and overuse poses considerable risks to human and animal health. With existing antibiotics losing their effectiveness and the protracted process of developing new antibiotics, urgent alternatives are imperative to curb disease spread. Notably, improving the bactericidal effect of antibiotics by using non-antibiotic substances has emerged as a viable strategy. Although reduced nicotinamide adenine dinucleotide (NADH) may play a crucial role in regulating bacterial resistance, studies examining how the change of metabolic profile and bacterial resistance following by exogenous administration are scarce. Therefore, this study aimed to elucidate the metabolic changes that occur in Edwardsiella tarda (E. tarda), which exhibits resistance to various antibiotics, following the exogenous addition of NADH using metabolomics. The effects of these alterations on the bactericidal activity of neomycin were investigated. NADH enhanced the effectiveness of aminoglycoside antibiotics against E. tarda ATCC15947, achieving bacterial eradication at low doses. Metabolomic analysis revealed that NADH reprogrammed the ATCC15947 metabolic profile by promoting purine metabolism and energy metabolism, yielding increased adenosine triphosphate (ATP) levels. Increased ATP levels played a crucial role in enhancing the bactericidal effects of neomycin. Moreover, exogenous NADH promoted the bactericidal efficacy of tetracyclines and chloramphenicols. NADH in combination with neomycin was effective against other clinically resistant bacteria, including Aeromonas hydrophila, Vibrio parahaemolyticus, methicillin-resistant Staphylococcus aureus, and Listeria monocytogenes. These results may facilitate the development of effective approaches for preventing and managing E. tarda-induced infections and multidrug resistance in aquaculture and clinical settings.


Assuntos
Aminoglicosídeos , Antibacterianos , Edwardsiella tarda , NAD , Edwardsiella tarda/efeitos dos fármacos , Antibacterianos/farmacologia , NAD/metabolismo , Aminoglicosídeos/farmacologia , Animais , Doenças dos Peixes/microbiologia , Doenças dos Peixes/tratamento farmacológico , Testes de Sensibilidade Microbiana , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Neomicina/farmacologia , Sinergismo Farmacológico , Metabolômica , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos
2.
PLoS Pathog ; 18(8): e1010796, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36026499

RESUMO

Macrophages restrict bacterial infection partly by stimulating phagocytosis and partly by stimulating release of cytokines and complement components. Here, we treat macrophages with LPS and a bacterial pathogen, and demonstrate that expression of cytokine IL-1ß and bacterial phagocytosis increase to a transient peak 8 to 12 h post-treatment, while expression of complement component 3 (C3) continues to rise for 24 h post-treatment. Metabolomic analysis suggests a correlation between the cellular concentrations of succinate and IL-1ß and of inosine and C3. This may involve a regulatory feedback mechanism, whereby succinate stimulates and inosine inhibits HIF-1α through their competitive interactions with prolyl hydroxylase. Furthermore, increased level of inosine in LPS-stimulated macrophages is linked to accumulation of adenosine monophosphate and that exogenous inosine improves the survival of bacterial pathogen-infected mice and tilapia. The implications of these data suggests potential therapeutic tools to prevent, manage or treat bacterial infections.


Assuntos
Infecções Bacterianas , Lipopolissacarídeos , Animais , Citocinas , Inosina/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Fagocitose , Ácido Succínico
3.
Metabolites ; 12(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35448473

RESUMO

Black soldier fly (Hermetia illucens) larvae meal have been used as feed protein supplements in fish feed, but few researches have investigated the metabolomic effects of Hermetia illucens larvae meal supplements. Therefore, the metabolic effects on Nile tilapia were investigated by replacing 5%, 10%, and 20% of the dietary soybean meal in the basal diet with Hermetia illucens larvae meal, respectively. This study shows that 20% H. illucens larvae meal feed could promote tilapia average daily gain of upto 5.03 ± 0.18 g (mean ± SEM). It was found that the tricarboxylic acid cycle efficiency was improved by activating the enzymes of mitochondrial isocitrate dehydrogenase, NAD-malate dehydrogenase, succinate dehydrogenase, pyruvate dehydrogenase, and α-ketoglutarate dehydrogenase, which then increased the output of ATP and NADH. Furthermore, amino acid and protein biosynthesis was boosted by enhanced glutamine synthetase and glutamate synthase. In particular, GSH increased with increased H. illucens larvae meal. Unsaturated fatty acid biosynthesis was stimulated by higher levels of fatty acid synthase and acetyl CoA carboxylase. Additionally, there was no significant change in lipase levels. Thus, the higher acetyl Co-A content was primarily involved in fatty acid biosynthesis and energy metabolism. Flavor substances, such as nonanal and 2-methyl-3-furanthiol, also accumulated with the addition of H. illucens larvae meal, which increased the umami taste and meat flavor. Additionally, the flavor of tilapia was improved owing to a decrease in trimethylamine content, which causes an earthy and fishy taste. This study uncovers a previously unknown metabolic effect of dietary H. illucens larvae meal on Nile tilapia.

4.
Int J Genomics ; 2022: 4017654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35141329

RESUMO

The fruiting bodies or mycelia of Hericium coralloides (H. coralloides) contain many physiologically active compounds that are used to treat various diseases, including cardiovascular disorders and cancers. However, the genome of H. coralloides has not been sequenced, which hinders further investigations into aspects, such as bioactivity or evolutionary events. The present study is aimed at (i) performing de novo sequencing of the assembled genome; (ii) mapping the reads from PE400 DNA into the assembled genome; (iii) identifying the full length of all the repeated sequences; and (iv) annotating protein-coding genes using GO, eggNOG, and KEGG databases. The assembled genome comprised 5,59,05,675 bp, including 307 contigs. The mapping rate of reads obtained from PE400 DNA in the assembled genome was 92.46%. We identified 2,525 repeated sequences of 14,23,274 bp length. We predicted ncRNAs of 48,895 bp and 11,736 genes encoding proteins that were annotated in the GO, eggNOG, and KEGG databases. We are the first to sequence the entire H. coralloides genome (NCBI; Assembly: ASM367540v1), which will serve as a reference for studying the evolutionary diversification of edible and medicinal mushrooms and facilitate the application of bioactivity in H. coralloides.

5.
Sci Transl Med ; 13(625): eabj0716, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936385

RESUMO

The prevalence of multidrug-resistant bacteria has been increasing rapidly worldwide, a trend that poses great risk to human and animal health and creates urgent need for pharmaceutical and nonpharmaceutical approaches to stop the spread of disease due to antimicrobial resistance. Here, we found that alanine, aspartate, and glutamate metabolism was inactivated, and glutamine was repressed in multidrug-resistant uropathogenic Escherichia coli using a comparative metabolomics approach. Exogenous glutamine promoted ß-lactam­, aminoglycoside-, quinolone-, and tetracycline-induced killing of uropathogenic E. coli and potentiated ampicillin to eliminate multidrug-resistant Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella peneumoniae, Edwardsiella tarda, Vibrio alginolyticus, and Vibrio parahaemolyticus. Glutamine-potentiated ampicillin-mediated killing was effective against biofilms of these bacteria in a mouse urinary tract infection model and against systemic infection caused by E. coli, P. aeruginosa, A. baumannii, or K. peneumoniae in a mouse model. Exogenous glutamine stimulated influx of ampicillin, leading to the accumulation of intracellular antibiotic concentrations that exceeded the amount tolerated by the multidrug-resistant bacteria. Furthermore, we demonstrated that exogenous glutamine promoted the biosynthesis of nucleosides including inosine, which in turn interacted with CpxA/CpxR and up-regulated OmpF. We validated the physiological relevance of the mechanism by showing that loss of purF, purH, cpxA, or ompF elevated antibiotic resistance in antibiotic-sensitive strains. In addition, glutamine retarded the development of ampicillin resistance. These results may facilitate future development of effective approaches for preventing or managing chronic, multidrug-resistant bacterial infections, bacterial persistence, and difficult-to-treat bacterial biofilms.


Assuntos
Antibacterianos , Glutamina , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Camundongos , Testes de Sensibilidade Microbiana
6.
Front Immunol ; 12: 682724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566956

RESUMO

Bacterial infection presents severe challenge to tilapia farming, which is largely influenced by water temperature. However, how water temperature determines tilapias' survival to infection is not well understood. Here, we address this issue from the perspective of metabolic state. Tilapias were more susceptible to Aeromonas sobria infection at 33°C than at 18°C, which is associated with differential metabolism of the fish. Compared to the metabolome of tilapia at 18°C, the metabolome at 33°C was characterized with increased an tricarboxylic acid cycle and a reduced level of myo-inositol which represent the most impactful pathway and crucial biomarker, respectively. These alterations were accompanied with the elevated transcriptional level of 10 innate immune genes with infection time, where il-1b, il-6, il-8, and il-10 exhibited a higher expression at 33°C than at 18°C and was attenuated by exogenous myo-inositol in both groups. Interestingly, exogenous myo-inositol inactivated the elevated TCA cycle via inhibiting the enzymatic activity of succinate dehydrogenase and malate dehydrogenase. Thus, tilapias showed a higher survival ability at 33°C. Our study reveals a previously unknown relationship among water temperature, metabolic state, and innate immunity and establishes a novel approach to eliminate bacterial pathogens in tilapia at higher water temperature.


Assuntos
Resistência à Doença/efeitos dos fármacos , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/etiologia , Inositol/farmacologia , Temperatura , Tilápia/microbiologia , Água , Animais , Biomarcadores , Resistência à Doença/imunologia , Metabolismo Energético , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Metaboloma , Metabolômica/métodos
7.
mSystems ; 6(4): e0042621, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34427522

RESUMO

Overactive immune response is a critical factor triggering host death upon bacterial infection. However, the mechanism behind the regulation of excessive immune responses is still largely unknown, and the corresponding control and preventive measures are still to be explored. In this study, we find that Nile tilapia, Oreochromis niloticus, that died from Edwardsiella tarda infection had higher levels of immune responses than those that survived. Such immune responses are strongly associated with metabolism that was altered at 6 h postinfection. By gas chromatography-mass spectrometry-based metabolome profiling, we identify glycine, serine, and threonine metabolism as the top three of the most impacted pathways, which were not properly activated in the fish that died. Serine is one of the crucial biomarkers. Exogenous serine can promote O. niloticus survival both as a prophylactic and therapeutic upon E. tarda infection. Our further analysis revealed exogenous serine flux into the glycine, serine, and threonine metabolism and, more importantly, the glutathione metabolism via glycine. The increased glutathione synthesis could downregulate reactive oxygen species. Therefore, these data together suggest that metabolic modulation of immune responses is a potential preventive strategy to control overactive immune responses. IMPORTANCE Bacterial virulence factors are not the only factors responsible for host death. Overactive immune responses, such as cytokine storm, contribute to tissue injury that results in organ failure and ultimately the death of the host. Despite the recent development of anti-inflammation strategies, the way to tune immune responses to an appropriate level is still lacking. We propose that metabolic modulation is a promising approach in tuning immune responses. We find that the metabolomic shift at as early as 6 h postinfection can be predictive of the consequences of infection. Serine is a crucial biomarker whose administration can promote host survival upon bacterial infection either in a prophylactic or therapeutic way. Further analysis demonstrated that exogenous serine promotes the synthesis of glutathione, which downregulates reactive oxygen species to dampen immune responses. Our study exemplifies that the metabolite(s) is a potential therapeutic reagent for overactive immune response during bacterial infection.

8.
J Cancer ; 12(5): 1563-1574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33532002

RESUMO

Background: Most tumors have an enhanced glycolysis flux, even when oxygen is available, called the aerobic glycolysis or the Warburg effect. Metabolic reprogramming promotes cancer progression, and is even related to the tumorigenesis. However, it is not clear whether the observed metabolic changes act as a driver or a bystander in cancer development. Methods: In this study, the metabolic characteristics of oral precancerous cells and cervical precancerous lesions were analyzed by metabolomics, and the expression of glycolytic enzymes in cervical precancerous lesions was evaluated by RT-PCR and Western blot analysis. Results: In total, 115 and 23 metabolites with reliable signals were identified in oral cells and cervical tissues, respectively. Based on the metabolome, oral precancerous cell DOK could be clearly separated from normal human oral epithelial cells (HOEC) and oral cancer cells. Four critical differential metabolites (pyruvate, glutamine, methionine and lysine) were identified between DOK and HOEC. Metabolic profiles could clearly distinguish cervical precancerous lesions from normal cervical epithelium and cervical cancer. Compared with normal cervical epithelium, the glucose consumption and lactate production increased in cervical precancerous lesions. The expression of glycolytic enzymes LDHA, HK II and PKM2 showed an increased tendency in cervical precancerous lesions compared with normal cervical epithelium. Conclusions: Our findings suggest that cell metabolism may be reprogrammed at the early stage of tumorigenesis, implying the contribution of metabolic reprogramming to the development of tumor.

9.
Environ Microbiol ; 22(10): 4367-4380, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32441046

RESUMO

Antibiotic-resistant Vibrio alginolyticus poses a big challenge to human health and food safety. It is urgently needed to understand the mechanisms underlying antibiotic resistance to develop effective approaches for the control. Here we explored the metabolic difference between gentamicin-resistant V. alginolyticus (VA-RGEN ) and gentamicin-sensitive V. alginolyticus (VA-S), and found that the reactive oxygen species (ROS) generation was altered. Compared with VA-S, the ROS content in VA-RGEN was reduced due to the decreased generation and increased breakdown of ROS. The decreased production of ROS was attributed to the decreased central carbon metabolism, which is associated with the resistance to gentamicin. As such a mechanism, we exogenously administrated VA-RGEN with the glucose that activated the central carbon metabolism and promoted the generation of ROS, but decreased the breakdown of ROS in VA-RGEN . The gentamicin-mediated killing was increased with the elevation of the ROS level by a synergistic effect between gentamicin and exogenous glucose. The synergistic effect was inhibited by thiourea, a scavenger of ROS. These results reveal a reduced ROS-mediated antibiotic resistance mechanism and its reversal by exogenous glucose.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Gentamicinas/farmacologia , Glucose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vibrio alginolyticus/metabolismo , Animais , Humanos , Tioureia/farmacologia , Vibrio alginolyticus/efeitos dos fármacos
10.
Virulence ; 11(1): 349-364, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32316833

RESUMO

Development of low-cost and eco-friendly approaches to fight bacterial pathogens is especially needed in aquaculture. We previously showed that exogenous malate reprograms zebrafish's metabolome to potentiate zebrafish survival against Vibrio alginolyticus infection. However, the underlying mechanism is unknown. Here, we use GC-MS based metabolomics to identify the malate-triggered metabolic shift. An activated TCA cycle and elevated taurine are identified as the key metabolic pathways and the most crucial biomarker of the reprogrammed metabolome, respectively. Taurine elevation is attributed to the activated TCA cycle, which is further supported by the increased expression of genes in the metabolic pathway of taurine biosynthesis from the isocitrate of the TCA cycle to taurine. Exogenous taurine increases the survival of zebrafish against V. alginolyticus infection as malate did. Moreover, exogenous taurine and malate regulate the expression of innate immunity genes and promote the generation of reactive oxygen species and nitrogen oxide in a similar way. The two metabolites can alleviate the excessive immune response to bacterial challenge, which protects fish from bacterial infection. These results indicate that malate enhances the survival of zebrafish to V. alginolyticus infection via taurine. Thus, our study highlights a metabolic approach to enhance a host's ability to fight bacterial infection.


Assuntos
Doenças dos Peixes/microbiologia , Malatos/farmacologia , Taurina/farmacologia , Vibrioses/microbiologia , Vibrio alginolyticus/patogenicidade , Peixe-Zebra/microbiologia , Animais , Aquicultura , Doenças dos Peixes/imunologia , Imunidade Inata , Redes e Vias Metabólicas , Metabolômica , Vibrioses/imunologia , Peixe-Zebra/imunologia , Peixe-Zebra/metabolismo
11.
Microb Biotechnol ; 13(3): 796-812, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32212318

RESUMO

Vibrio alginolyticus threatens both humans and marine animals, but hosts respond to V. alginolyticus infection is not fully understood. Here, functional metabolomics was adopted to investigate the metabolic differences between the dying and surviving zebrafish upon V. alginolyticus infection. Tryptophan was identified as the most crucial metabolite, whose abundance was decreased in the dying group but increased in the survival group as compared to control group without infection. Concurrently, the dying zebrafish displayed excessive immune response and produced higher level of reactive oxygen species (ROS). Interestingly, exogenous tryptophan reverted dying rate through metabolome re-programming, thereby enhancing the survival from V. alginolyticus infection. It is preceded by the following mechanism: tryptophan fluxed into the glycolysis and tricarboxylic acid cycle (TCA cycle), promoted adenosine triphosphate (ATP) production and further increased the generation of NADPH. Meanwhile, tryptophan decreased NADPH oxidation. These together ameliorate ROS, key molecules in excessive immune response. This is further supported by the event that the inhibition of pyruvate metabolism and TCA cycle by inhibitors decreased D. reiro survival. Thus, our data indicate that tryptophan is a key metabolite for the host to fight against V. alginolyticus infection, representing an alternative strategy to treat bacterial infection in an antibiotic-independent way.


Assuntos
Doenças dos Peixes , Vibrioses/veterinária , Animais , Antibacterianos/farmacologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/mortalidade , Doenças dos Peixes/fisiopatologia , Metaboloma , Oxirredução , Triptofano/farmacologia , Vibrioses/imunologia , Vibrioses/mortalidade , Vibrioses/fisiopatologia , Vibrio alginolyticus/efeitos dos fármacos , Peixe-Zebra/imunologia
12.
Environ Microbiol ; 20(11): 4022-4036, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30307102

RESUMO

The development of antibiotic resistance in Vibrio alginolyticus represents a threat to human health and fish farming. Environmental NaCl regulation of bacterial physiology is well documented, but whether the regulation contributes to antibiotic resistance remains unknown. To explore this, we compared minimum inhibitory concentration (MIC) of V. alginolyticus cultured in different media with 0.5%-10% NaCl, and found that the MIC increased as the NaCl concentration increased, especially for aminoglycoside antibiotics. Consistent with this finding, internal NaCl also increased, while intracellular gentamicin level decreased. GC-MS-based metabolomics showed different distributions of pyruvate cycle intermediates among 0.5%, 4% and 10% NaCl. Differential activity of enzymes in the pyruvate cycle and altered expression of Na(+)-NQR led to a reducing redox state, characterized by decreased levels of NADH, proton motive force (PMF) and ATP. Meanwhile, NaCl negatively regulated PMF as a consequence of the reducing redox state. These together are responsible for the decreased intracellular gentamicin level with the increased external level of NaCl. Our study reveals a previously unknown redox state-dependent mechanism regulated by NaCl in V. alginolyticus that impacts antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Cloreto de Sódio/farmacologia , Vibrio alginolyticus/efeitos dos fármacos , Meios de Cultura , Testes de Sensibilidade Microbiana , Oxirredução
13.
J Proteome Res ; 17(9): 2987-2994, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30095909

RESUMO

It is widely accepted that live vaccines elicit higher immune protection than inactivated vaccines. However, the mechanisms are largely unknown. Here, an array with 64 recombinant outer membrane proteins of Vibrio parahemolyticus was developed to explore antibody responses of live and inactivated V. parahemolyticus post immunization of the 8th, 12th, 16th and 20th day. Among the 64 outer membrane proteins, 28 elicited antibody generation. They were all detected in live vaccine-induced immunity but only 15 antibodies were found in inactivated vaccine-induced immunity. Passive immunization showed that higher percent survival was detected in live than inactivated vaccine-induced immunities. Active immunization indicated that out of 19 randomly selected outer membrane proteins, 5 stimulated immune protection against V. parahemolyticus infection. Among them, antibodies to VP2309 and VPA0526 were shared in mice immunized by live or inactivated vaccines, whereas antibodies to VPA0548, VPA1745, and VP1667 were only found in mice immunized by live vaccine. In addition, live V. parahemolyticus stimulated earlier antibody response than inactivated bacteria. These results indicate that not all of the outer membrane proteins elicited antibody responses when they work together in the form of live or inactivated bacteria; live vaccine elicits more protective antibodies, which contribute to higher immune protection in live vaccine than inactivated vaccine. Notably, the recombinant proteins might be different from those separated from live bacteria, and they might be different in their immunogenic potencies.


Assuntos
Anticorpos Antibacterianos/biossíntese , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Imunidade Humoral/efeitos dos fármacos , Vibrioses/prevenção & controle , Animais , Proteínas da Membrana Bacteriana Externa/administração & dosagem , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Temperatura Alta , Soros Imunes/administração & dosagem , Imunização Passiva/métodos , Imunogenicidade da Vacina , Camundongos , Análise Serial de Proteínas , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Análise de Sobrevida , Vacinas de Produtos Inativados , Vibrioses/imunologia , Vibrioses/microbiologia , Vibrioses/mortalidade , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/crescimento & desenvolvimento , Vibrio parahaemolyticus/imunologia , Peixe-Zebra
14.
Int J Mol Sci ; 19(7)2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30041403

RESUMO

Neuroglobin is an endogenous neuroprotective protein, but the underlying neuroprotective mechanisms remain to be elucidated. Our previous yeast two-hybrid screening study identified that Dishevelled-1, a key hub protein of Wnt/ß-Catenin signaling, is an interaction partner of Neuroglobin. In this study, we further examined the role of Neuroglobin in regulating Dishevelled-1 and the downstream Wnt/ß-Catenin and NFκB signaling pathway. We found that Neuroglobin directly interacts with Dishevelled-1 by co-immunoprecipitation, and the two proteins are co-localized in both cytoplasma and nucleus of SK-N-SH cells. Moreover, the ectopic expression of Neuroglobin promotes the degradation of exogenous and endogenous Dishevelled-1 through the proteasomal degradation pathway. Furthermore, our results showed that Neuroglobin significantly inhibits the luciferase activity of Topflash reporter and the expression of ß-Catenin mediated by Dishevelled-1 in SK-N-SH cells. In addition, we also documented that Neuroglobin enhances TNF-α-induced NFκB activation via down-regulating Dishevelled-1. Finally, 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assays showed that Neuroglobin is an important neuroprotectant that protects SK-N-SH cells from TNF-α-induced decrease in cell viability. Taken together, these findings demonstrated that Neuroglobin functions as an important modulator of the Wnt/ß-Catenin and NFκB signaling pathway through regulating Dishevelled-1.


Assuntos
Globinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Via de Sinalização Wnt , Linhagem Celular Tumoral , Proteínas Desgrenhadas/metabolismo , Globinas/genética , Humanos , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Neuroglobina , Ligação Proteica , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
15.
J Proteomics ; 181: 83-91, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29627625

RESUMO

The overuse and misuse of antibiotics lead to bacterial antibiotic resistance, challenging human health and intensive cultivation. It is especially required to understand for the mechanism of antibiotic resistance to control antibiotic-resistant pathogens. The present study characterized the differential proteome of levofloxacin-resistant Vibrio alginolyticus with the most advanced iTRAQ quantitative proteomics technology. A total of 160 proteins of differential abundance were identified, where 70 were decreased and 90 were increased. Further analysis demonstrated that crucial metabolic pathways like TCA cycle were significantly down-regulated. qRT-PCR analysis demonstrated the decreased gene expression of glycolysis/gluconeogenesis, the TCA cycle, and fatty acid biosynthesis. Moreover, Na(+)-NQR complex gene expression, membrane potential and the adenylate energy charge ratio were decreased, indicating that the decreased central carbon metabolism is associated to the acquisition of levofloxacin resistance. Therefore, the reduced central carbon and energy metabolisms form a characteristic feature as fitness costs of V. alginolyticus in resistance to levofloxacin. BIOLOGICAL SIGNIFICANCE: The overuse and misuse of antibiotics lead to bacterial antibiotic resistance, challenging human health and intensive cultivation. Understanding for the antibiotic resistance mechanisms is especially required to control these antibiotic-resistant pathogens. The present study characterized the differential proteome of levofloxacin-resistant Vibrio alginolyticus using the most advanced iTRAQ quantitative proteomics technology. A total of 160 differential abundance of proteins were identified with 70 decreases and 90 increases by liquid chromatography matrix assisted laser desorption ionization mass spectrometry. Most interestingly, crucial metabolic pathways such as the TCA cycle sharply fluctuated. This is the first report that the reduced central carbon and energy metabolisms form a characteristic feature as a mechanism of V. alginolyticus in resistance to levofloxacin.


Assuntos
Proteínas de Bactérias , Ciclo do Ácido Cítrico/fisiologia , Farmacorresistência Bacteriana , Ácidos Graxos , Levofloxacino , Vibrio alginolyticus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo
16.
Proc Natl Acad Sci U S A ; 115(7): E1578-E1587, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29382755

RESUMO

The emergence and ongoing spread of multidrug-resistant bacteria puts humans and other species at risk for potentially lethal infections. Thus, novel antibiotics or alternative approaches are needed to target drug-resistant bacteria, and metabolic modulation has been documented to improve antibiotic efficacy, but the relevant metabolic mechanisms require more studies. Here, we show that glutamate potentiates aminoglycoside antibiotics, resulting in improved elimination of antibiotic-resistant pathogens. When exploring the metabolic flux of glutamate, it was found that the enzymes that link the phosphoenolpyruvate (PEP)-pyruvate-AcCoA pathway to the TCA cycle were key players in this increased efficacy. Together, the PEP-pyruvate-AcCoA pathway and TCA cycle can be considered the pyruvate cycle (P cycle). Our results show that inhibition or gene depletion of the enzymes in the P cycle shut down the TCA cycle even in the presence of excess carbon sources, and that the P cycle operates routinely as a general mechanism for energy production and regulation in Escherichia coli and Edwardsiella tarda These findings address metabolic mechanisms of metabolite-induced potentiation and fundamental questions about bacterial biochemistry and energy metabolism.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Edwardsiella tarda/efeitos dos fármacos , Edwardsiella tarda/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Ácido Pirúvico/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fosfoenolpiruvato/metabolismo
17.
Virulence ; 9(1): 634-644, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29338666

RESUMO

Vibrio alginolyticus is a waterborne pathogen that infects a wide variety of hosts including fish and human, and the outbreak of this pathogen can cause a huge economic loss in aquaculture. Thus, enhancing host's capability to survive from V. alginolyticus infection is key to fighting infection and this remains still unexplored. In the present study, we established a V. alginolyticus-zebrafish interaction model by which we explored how zebrafish survived from V. alginolyticus infection. We used GC-MS based metabolomic approaches to characterize differential metabolomes between survival and dying zebrafish upon infection. Pattern recognition analysis identified the TCA cycle as the most impacted pathway. The metabolites in the TCA cycle were decreased in the dying host, whereas the metabolites were increased in the survival host. Furthermore, the enzymatic activities of the TCA cycle including pyruvate dehydrogenase (PDH), α-ketoglutaric dehydrogenase (KGDH) and succinate dehydrogenase (SDH) also supported this conclusion. Among the increased metabolites in the TCA cycle, malic acid was the most crucial biomarker for fish survival. Indeed, exogenous malate promoted zebrafish survival in a dose-dependent manner. The corresponding activities of KGDH and SDH were also increased. These results indicate that the TCA cycle is a key pathway responsible for the survival or death in response to infection caused by V. alginolyticus, and highlight the way on development of metabolic modulation to control the infection.


Assuntos
Ciclo do Ácido Cítrico , Vibrioses/imunologia , Vibrioses/patologia , Vibrio alginolyticus/patogenicidade , Peixe-Zebra , Animais , Modelos Animais de Doenças , Cromatografia Gasosa-Espectrometria de Massas , Complexo Cetoglutarato Desidrogenase/análise , Malatos/análise , Metabolômica , Complexo Piruvato Desidrogenase/análise , Succinato Desidrogenase/análise , Análise de Sobrevida
18.
Fish Shellfish Immunol ; 72: 104-110, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29107742

RESUMO

Vaccines are the most economic, efficient and environment-friendly agents in protecting host against bacterial infection. In aquaculture, polyvalent vaccines targeting more than one bacterial specie are highly demanded due to the presence of various types of bacterial pathogens in farming environment. Here eighteen genes encoding outer membrane proteins of Vibrio parahaemolyticus were cloned and expressed. The expressed recombinant proteins were used for antiserum preparation. Passive and active immune protection of the antiserum and recombinant proteins was investigated in the zebrafish model. Two recombinant proteins, VP1667 and VP2369, showed effective immune protection against at least two genera of bacteria, Vibrio (V. parahaemolyticus and V. alginolyticus), Pseudomonas (P. fluorescens) or/and Aeromonas (A. hydrophila), and thereby are potential polyvalent vaccine candidates to defend against bacterial infection in fish farming. Furthermore, the mechanisms for the two polyvalent vaccines in triggering immune response were explored. Antiserum to VP1667 or VP2369 was not cross-reacted with P. fluorescens and A. hydrophila, whereas both recombinant proteins induced significant innate immune response. Comparatively, VP1667 stimulates stronger lymphokine and monokine, and VP2369 induces stronger humoral immune response, while both produce similar NF-κB, COX-2, TLR-1 and TLR-3 expression. Our results identify two polyvalent vaccines and demonstrate characteristics features of their cross-protection at the content of the innate immune response.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Imunidade Inata , Imunização Passiva/veterinária , Vacinação/veterinária , Vibrio parahaemolyticus/imunologia , Peixe-Zebra/imunologia , Animais , Antígenos de Bactérias/imunologia , Clonagem Molecular , Proteínas Recombinantes/imunologia
19.
Front Immunol ; 8: 1706, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29270172

RESUMO

Evasion of complement-mediated killing is a common phenotype for many different types of pathogens, but the mechanism is still poorly understood. Most of the clinic isolates of Edwardsiella tarda, an important pathogen infecting both of human and fish, are commonly found serum-resistant. To explore the potential mechanisms, we applied gas chromatography-mass spectrometry (GC-MS)-based metabolomics approaches to profile the metabolomes of E. tarda EIB202 in the presence or absence of serum stress. We found that tricarboxylic acid (TCA) cycle was greatly enhanced in the presence of serum. The quantitative real-time PCR (qRT-PCR) and enzyme activity assays validated this result. Furthermore, exogenous succinate that promotes the TCA cycle increased serum resistance, while TCA cycle inhibitors (bromopyruvate and propanedioic acid) that inhibit TCA cycle, attenuated serum resistance. Moreover, the enhanced TCA cycle increased membrane potential, thus decreased the formation of membrane attack complex at cell surface, resulting serum resistance. These evidences suggested a previously unknown membrane potential-dependent mechanism of serum resistance. Therefore, our findings reveal that pathogen mounts a metabolic trick to cope with the serum complement-mediated killing.

20.
J Proteome Res ; 16(5): 1880-1889, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28266220

RESUMO

Crucial metabolites that modulate hosts' metabolome to eliminate bacterial pathogens have been documented, but the metabolic mechanisms are largely unknown. The present study explores the metabolic mechanism for l-leucine-induced metabolome to eliminate Streptococcus iniae in tilapia. GC-MS-based metabolomics was used to investigate the tilapia liver metabolic profile in the presence of exogenous l-leucine. Thirty-seven metabolites of differential abundance were determined, and 11 metabolic pathways were enriched. Pattern recognition analysis identified serine and proline as crucial metabolites, which are the two metabolites identified in survived tilapias during S. iniae infection, suggesting that the two metabolites play crucial roles in l-leucine-induced elimination of the pathogen by the host. Exogenous l-serine reduces the mortality of tilapias infected by S. iniae, providing a robust proof supporting the conclusion. Furthermore, exogenous l-serine elevates expression of genes IL-1ß and IL-8 in tilapia spleen, but not TNFα, CXCR4 and Mx, suggesting that the metabolite promotes a phagocytosis role of macrophages, which is consistent with the finding that l-leucine promotes macrophages to kill both Gram-positive and Gram-negative bacterial pathogens. Therefore, the ability of phagocytosis enhanced by exogenous l-leucine is partly attributed to elevation of l-serine. These results demonstrate a metabolic mechanism by which exogenous l-leucine modulates tilapias' metabolome to enhance innate immunity and eliminate pathogens.


Assuntos
Leucina/farmacologia , Metaboloma/efeitos dos fármacos , Fagocitose , Streptococcus/imunologia , Tilápia/metabolismo , Animais , Doenças dos Peixes/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Imunidade Inata , Fígado/metabolismo , Macrófagos/imunologia , Metabolômica/métodos , Fagocitose/efeitos dos fármacos , Baço/metabolismo , Infecções Estreptocócicas , Tilápia/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...