Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 244: 125444, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31812052

RESUMO

While Co is the most effective metal for activating PMS, extensive efforts are made to develop Co/Fe species (CF) (e.g., CoFe2O4) for imparting magnetic properties and facilitating recovery of catalysts. When carbon substrates are doped with heteroatoms (e.g., S and N) and CF is embedded within the heteroatom-doped carbon matrix, synergies can occur to boost catalytic activities. This study proposes an alternative CF-bearing carbonaceous composite, a cobalt-containing Prussian Blue Analogue (PBA) (Co3[Fe(CN)6]2) is employed as a precursor for preparing CF species embedded in N-doped carbon matrix and immobilized on S/N-co-doped carbon (SNC). Specifically, PBA in-situ grows on SNC by a heat treatment of trithiocyanuric acid to form PBA@SNC, which is then carbonized into CF species@SNC (CF@SNC). By adopting Amaranth degradation as a model reaction, CF@SNC shows a higher catalytic activity (kapp = 0.230 min-1) than CF (kapp = 0.152 min-1) and SNC (kapp = 0.016 min-1) for activating PMS. In comparison with Co3O4, CF@SNC exhibits a higher catalytic activity for PMS activation. CF@SNC renders a relatively low Ea value (53 kJ/mol) for Amaranth degradation in comparison to other reported catalysts. These comparisons demonstrate the advantageous features of CF@SNC as a magnetic and efficient catalyst for PMS activation.


Assuntos
Carbono/química , Peróxidos/química , Poluentes Químicos da Água/química , Catálise , Cobalto/química , Ferrocianetos , Fenômenos Magnéticos , Magnetismo , Metais , Modelos Químicos , Nanopartículas/química , Água
2.
Chemosphere ; 226: 924-933, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31509922

RESUMO

-While sulfate radical (SO4-)-based processes are useful to degrade acetaminophen (ACE), studies of using peroxymonosulfate (PMS) to degrade ACE are quite limited. In addition, although Co is validated as the most effective metal for activating PMS, very few Co catalysts have been developed and investigated for activating PMS to degrade ACE. Since carbon is a promising substrate to support Co nanoparticles (NPs) to form Co/carbon composite catalysts, most existing carbon substrates require delicate fabrications. As biochar is an easy-to-obtain but versatile carbon material, pyrolysis of Co/lignin affords an advantageous Co-impregnated biochar (CoIB) as an attractive catalyst for PMS activation. Specifically, as CO2 substitutes N2 as a reaction medium for pyrolysis of Co/lignin, the syngas production from pyrolysis can be substantially improved and a magnetic CoIB is afforded. This CoIB consists of evenly-distributed Co nanoparticles (NPs) impregnated in carbon matrices of biochar, and possesses several superior characteristics, such as high porosity, large surface area and magnetism, enabling CoIB a promising catalyst for activating PMS to degrade ACE. CoIB also shows a much higher catalytic activity of PMS activation than CoIBN2, and Co3O4 for degrading ACE. CoIB is also recyclable for activating PMS to effectively degrade ACE for multiple cycles. The ACE degradation pathway by this CoIB-activated PMS is proposed according to the degradation products. These findings validate that CoIB is assuredly an advantageous heterogeneous catalyst, which can be easily prepared from pyrolysis of Co/lignin in CO2 with concomitant enhanced syngas production for effectively activating PMS to degrade ACE.


Assuntos
Acetaminofen/química , Dióxido de Carbono/química , Carvão Vegetal/química , Cobalto/química , Lignina/química , Peróxidos/química , Pirólise , Catálise
3.
ACS Appl Mater Interfaces ; 11(38): 34895-34903, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31479240

RESUMO

Separators are key safety components for electrochemical energy storage systems. However, the intrinsic poor wettability with electrolyte and low thermal stability of commercial polyolefin separators cannot meet the requirements of the ever-expanding market for high-power, high-energy, and high-safety power systems, such as lithium-metal, lithium-sulfur, and lithium-ion batteries. In this study, scalable bendable networks built with ultralong silica nanowires (SNs) are developed as stable separators for both high-safety and high-power lithium-metal batteries. The three-dimensional porous nature (porosity of 73%) and the polar surface of the obtained SNs separators endue a much better electrolyte wettability, larger electrolyte uptake ratio (325%), higher electrolyte retention ratio (63%), and ∼7 times higher ionic conductivity than that of commercial polypropylene (PP) separators. Moreover, the pore-rich structure of the SNs separator can aid in evenly distributing lithium and, in turn, suppress the uncontrollable growth of lithium dendrites to a certain degree. Furthermore, the pure inorganic structure endows the SNs separators with excellent chemical and electrochemical stabilities even at elevated temperatures, as well as excellent thermal stability up to 700 °C. This work underpins the utilization of SNs separators as a rational choice for developing high-performance batteries with a metallic lithium anode.

4.
ACS Appl Mater Interfaces ; 11(22): 20013-20021, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31070348

RESUMO

To enhance the utilization of sulfur in lithium-sulfur batteries, three-dimensional tungsten nitride (WN) mesoporous foam blocks are designed to spatially localize the soluble Li2S6 and Li2S4 within the pore spaces. Meanwhile, the chemisorption behaviors of polysulfides and the capability of WN as an effective confiner are systematically investigated through density functional theory calculations and experimental studies. The theoretical calculations reveal a decrease in chemisorption strength between WN and the soluble polysulfides (Li2S8 > Li2S6 > Li2S4), while the interactions between WN and the insoluble Li2S2/Li2S show a high chemisorption strength of ca. 3 eV. Validating theoretical insights through electrochemical measurements further manifest that the assembled battery configurations with sulfur cathode confined in the thickest WN blocks exhibit the best rate capabilities (1090 and 510 mAh g-1 at 0.5C and 5C, respectively) with the highest initial Coulombic efficiency of 90.5%. Moreover, a reversible capacity of 358 mAh g-1 is maintained with a high Coulombic efficiency approaching to 100%, even after 500 cycles at 2C. As guided by in silico design, this work not only provides an effective strategy to improve the retentivity of polysulfides but also underpins that properly architectured WN can be effective retainers of polysulfides.

5.
J Colloid Interface Sci ; 545: 16-24, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30861478

RESUMO

Carbonaceous materials have been proven as advantageous supports for anchoring cobalt (Co) nanoparticles (NPs) to formulate Co/carbon composite catalysts for Oxone activation in degrading pollutants in water. While Co/carbon composites represent attractive catalysts, most carbonaceous supports are usually sophisticatedly fabricated using fine chemicals and immobilization of Co on carbon supports requires complicated post-modifications. As biochar appears as a versatile but easily-accessible carbon, pyrolysis of Co/lignin can result in a promising Co/biochar (CoBC) catalyst for Oxone activation. Especially, when CO2 is used to replace N2 as a reaction medium for pyrolysis of Co/lignin, the syngas production from pyrolysis can be enhanced and a magnetic CoBC is also obtained. This CoBC appears as a micro-sized composite of Co nanoparticles (NPs) well-distributed and embedded within carbon matrices, and exhibits several advantageous properties, such as high porosity, large surface area and magnetism, making it an advantageous catalyst for activating Oxone in water. As decolorization of Amaranth (AMR) dye is employed as a model test, CoBC successfully activates Oxone to fully decolorize AMR within 60 min with a rate constant of 0.33 min-1. CoBC also exhibits a much higher catalytic activity than CoBC prepared from pyrolysis in N2, and Co3O4, revealing its promising advantages. The activation energy of AMR decolorization by CoBC-activated Oxone is 48 kJ/mol, which is also lower than those reported in other studies. CoBC can be also re-used to activate Oxone over multiple cycles. These findings validate that CoBC is certainly a promising heterogeneous catalyst, which can be simply prepared from pyrolysis of Co/lignin in CO2 with concomitant enhanced syngas production.

6.
J Colloid Interface Sci ; 543: 52-63, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30779993

RESUMO

While zirconium (Zr)-based metal organic frameworks (MOFs) are promising for conversion of levulinic acid (LA) to γ-valerolactone (GVL) through catalytic transform hydrogenation (CTH), these reported Zr MOFs for LA conversion must be synthesized in toxic dimethylformamide (DMF). From the viewpoint of sustainability, it is preferable to avoid usage of DMF-based solvents to prepare these Zr MOFs. As water is a green solvent, the aim of this study is to develop and investigate Zr MOFs, which are prepared in water, for LA conversion to GVL. Specifically, monocarboxylic acids (e.g., formic acid, acetic acid and propanoic acid) are employed as modulators during the preparation of water-born ZrF. The role of modulators is extremely important for the well-developed formation of water-born ZrF. In addition, different monocarboxylic acid modulators also significantly influence the morphology of water-born ZrF; nevertheless, their crystalline structures and acidities are equivalent. As for LA conversion, these water-born modulated ZrF MOFs are validated to successfully convert LA to GVL. Especially, the formic acid-modulated ZrF can exhibit LA conversion = 96%, selectivity for GVL = 98% and yield of GVL = 98%. These water-born modulated ZrF also exhibit even higher catalytic activities than the typical DMF-based ZrF and reported Zr-based MOFs in LA conversion to GVL. These water-born ZrF could be also reused even without regeneration for multiple cyclic LA conversion. These results and findings prove that the water-born ZrF is not only environmentally benign but also more effective for LA conversion to GVL.


Assuntos
Lactonas/síntese química , Ácidos Levulínicos/química , Estruturas Metalorgânicas/química , Água/química , Zircônio/química , Catálise , Hidrogenação , Lactonas/química , Tamanho da Partícula , Propriedades de Superfície
7.
Chemosphere ; 213: 295-304, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30237042

RESUMO

Ferrocene (Fc) has been regarded as a useful catalyst for activating Oxone to generate sulfate radicals (SR) in degradation of organic pollutants. Nevertheless, direct usage of Fc molecules in aqueous solutions may lead to difficult recovery and aggregation. While a few attempts have immobilized Fc on several substrates, these substrates exhibit very low surface areas/porosities and, especially, do not offer significantly additional contributions to catalytic activities. In this study, a Fe-containing metal organic frameworks (MOFs), MIL-101, is particularly selected for the first time as a support to immobilize Fc chemically. Through the Schiff base reaction, ferrocenecarboxaldehyde can react with amine-functionalized MIL-101 (namely, MIL-101-NH2) to form Fc-modified MIL-101 (Fc-MIL). As Fc-MIL consists of both Fe from MIL-101 and Fc and also exhibits high surface areas, it appears as a promising catalyst for activating Oxone. Catalytic activities for Oxone activation by Fc-MIL are studied using batch-type experiments of amaranth dye degradation. Fc-MIL shows higher catalytic activities than its precursor MIL-101-NH2 owing to the modification of Fc, which equips with MIL-101 with more catalytic sites for activating Oxone. Besides, Fc-MIL also outperforms the benchmark catalyst of Oxone activation, Co3O4, to degrade amaranth. In comparison to the other reported catalysts, Fc-MIL shows the much smaller activation energy for amaranth degradation, proving its advantage over other catalysts. The synthesis technique proposed here can be also employed to develop other Fc-modified MOFs for other environmental catalysis applications.


Assuntos
Compostos Ferrosos/química , Ferro/química , Estruturas Metalorgânicas/química , Metalocenos/química , Ácidos Sulfúricos/química , Catálise , Água/química
8.
J Colloid Interface Sci ; 529: 161-170, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29890409

RESUMO

While Prussian Blue (PB) analogues are attractive catalysts for activating peroxymonosulfate (PMS), PB analogues are very small and thus difficult for recovery. Immobilizing PB particles onto graphene is a useful technique which facilitates recovery and also enhances catalytic activities. As doping graphene with sulfur/nitrogen (S/N) increases its electro-conductivity and active sites, the composite of PB and S/N-doped graphene should enhance PMS activation. Thus, this study aims to fabricate such a composite. Unlike conventional S/N-doped graphene prepared via post-modifications, trithiocyanuric acid is used as a precursor, which is converted to S-doped graphitic carbon nitride (SCN). The composite of PB and SCN (PBSCN) is then fabricated by growing a cobalt-based PB analogue on SCN. The resulting PBSCN preserves the crystalline structures, textural properties and catalytic sites of PB and SCN. As degradation of Acid Red 27 (AR) is used as a model reaction, PBSCN exhibits a higher catalytic activity than PB and SCN individually, as well as Co3O4 to activate PMS for AR degradation possibly because SCN may facilitate electron transfer and enhance catalytic activities of PB. PBSCN also remains effective and re-usable over several cycles for AR degradation. These features indicate that PBSCN is a promising catalyst for activating PMS and the fabrication technique demonstrated here can be employed to prepare composites of various PB analogues and carbon nitride to exhibit enhanced catalytic activities.

9.
Chemosphere ; 208: 502-511, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29886339

RESUMO

Cobalt ferrite (CF) nanoparticle (NP) represents a promising alternative to Co3O4 NP for peroxymonosulfate (PMS) activation in view of its strong magnetism for easy recovery. As CF NPs in water are prone to agglomerate, a few attempts have been made to immobilize CF NPs on substrates. While carbonaceous supports are more favorable owing to their earth abundancy, the study of carbon-supported CF for PMS activation is limited to graphene-based CF, which, however, requires complicated protocols to prepare. As carbon-supported CF, by straightforward preparation, is still greatly desired, this study aims to employ electrospinning techniques for preparing carbon-supported CF by carbonizing an electrospun CF-embedded polyacrylonitrile (PAN) fiber. After carbonization, the CF-PAN fiber is converted into CF-embedded carbon nanofiber (CF@CNF), which contains well distributed CF NPs, high magnetism and stable carbon support, making CF@CNF a highly promising catalyst for activating PMS. As amaranth decolorization is used as a model reaction, CF@CNF is able to activate PMS for generating sulfate radicals and then decolorize amaranth in water. Amaranth decolorization by CF@CNF-PMS is also substantially facilitated at elevated temperature, and enhanced under the weakly acidic condition. CF@CNF also remains effective to activate PMS even in the presence of salts and surfactants, and re-usable over multiple cycles. Compared to other reported catalysts, CF@CNF also exhibited a much lower Ea value (35.8 kJ/mol) for amaranth decolorization. These features validate that CF@CNF is an advantageous and convenient catalyst for activating PMS.


Assuntos
Carbono/química , Cobalto/química , Compostos Férricos/química , Magnetismo , Nanopartículas/química , Peróxidos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Fibra de Carbono , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...