Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 150: 109603, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704112

RESUMO

Infection-induced hemolysis results in intravascular hemolysis, which releases hemoglobin (Hb) into the tissues. Free Hb exhibits cytotoxic, oxidative, and pro-inflammatory effects, leading to systemic inflammation, vascular constriction dysfunction, thrombosis, and proliferative vascular lesions. Currently, the impact of intravascular hemolysis on the middle kidney in fish is unclear. Here, the injection of phenylhydrazine (PHZ) was used to establish a persistent hemolysis model in grass carp. The determination results revealed that the PHZ-induced hemolysis caused conspicuous tissue damage in the kidneys of grass carp, increased the levels of Cr in the serum and the expression indicators of kidney injury-related genes in the middle kidney. Prussian blue staining indicated that PHZ-induced hemolysis significantly increased the deposition of iron ions in the kidneys of grass carp, and activated the expression levels of iron metabolism-related genes. The results of oxidative damage-related experiments indicate that under PHZ treatment, the activity of middle kidney cells decreases, and the production of oxidative damage markers malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) increases, simultaneously inhibiting the activity of antioxidant enzymes and upregulating the transcription levels of antioxidant enzyme-related genes. Additionally, the analysis of inflammatory factors revealed a significant upregulation of genes associated with inflammation induced by PHZ-induced hemolysis. The transcriptome analysis was performed to further explore the molecular regulatory effects of hemolysis on tissues, the analysis revealed the treatment of PHZ activated various of programmed cell death (PCD) pathways, including ferroptosis, apoptosis, and autophagy. In summary, this study found that sustained hemolysis in fish results in Hb and iron ion deposition in middle kidney, promoting oxidative damage, ultimately inducing various forms of PCD.


Assuntos
Carpas , Doenças dos Peixes , Hemólise , Animais , Carpas/imunologia , Doenças dos Peixes/imunologia , Fenil-Hidrazinas/efeitos adversos , Fenil-Hidrazinas/toxicidade , Nefropatias/veterinária , Nefropatias/etiologia , Nefropatias/imunologia , Rim/imunologia , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
2.
Fish Shellfish Immunol ; 136: 108716, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37001745

RESUMO

Toll-like receptor (TLR) is an important pattern recognition receptor, which specifically recognizes microbial components, and TLR5 recognizes bacterial flagellin in vertebrates and invertebrates. In this study, two forms of TLR5 (TLR5a and TLR5b) were identified in grass carp (Ctenopharyngodon idella). Aeromonas hydrophila and Staphylococcus aureus were used to investigate the role of grass carp TLR5a and TLR5b against bacteria (flagellate and non-flagellate) in innate immunity, and the expression of TLR5a and TLR5b genes and proteins were detected in immune-related tissues. Quantitative real-time polymerase chain reaction results showed that TLR5a and TLR5b genes of grass carp were highly expressed in the liver, spleen, and head kidney, and their expression patterns were similar in tissues. Meanwhile, the TLR5b gene expression was higher than TLR5a in most tissues. Following exposure to A. hydrophila and S. aureus, the expression levels of TLR5a and TLR5b genes in the liver, spleen, and head kidney were up-regulated significantly. Moreover, the downstream gene, NF-κB, was up-regulated significantly. After A. hydrophila infection, the expression of TLR5a gene was up-regulated in the liver and spleen at 24 h, while TLR5b was up-regulated at 6 h. In the head kidney, TLR5a was up-regulated at 6 h, while TLR5b was up-regulated at 6 h and 12 h. After S. aureus infection, TLR5a and TLR5b were up-regulated at 6 h in the liver and 12 h in the spleen. However, in the head kidney, TLR5a was down-regulated, while TLR5b was up-regulated. Compared with TLR5a, TLR5b had a higher expression level and stronger response to pathogen stimulation. The immunofluorescence results showed that TLR5a and TLR5b proteins in the liver of grass carp infected with A. hydrophila and S. aureus were similar but different in the spleen and head kidney. The results indicated that TLR5a and TLR5b play a critical role in resisting bacterial infection, and TLR5a and TLR5b had obvious tissue and pathogen specificity. TLR5b may play a major role in immune tissues, while TLR5a may play an auxiliary regulatory role in early infection. In addition, TLR5a and TLR5b have an irreplaceable regulatory role in response to flagellate and non-flagellate bacteria. This lays a foundation to explore further the role of TLR5 in resisting flagellate and non-flagellate infections in fish and provides a reference for the innate immunity research of grass carp.


Assuntos
Infecções Bacterianas , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Carpas/metabolismo , Receptor 5 Toll-Like/genética , Staphylococcus aureus/metabolismo , Imunidade Inata , Aeromonas hydrophila/fisiologia , Proteínas de Peixes
3.
Fish Shellfish Immunol ; 133: 108533, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36639067

RESUMO

Macrobrachium rosenbergii as one of the common freshwater prawn species in Southeast Asia, which breeding industry is seriously threatened by vibriosis and causes high mortality. In this study, the RNA-seq was employed for assessing the M. rosenbergii hemocytes transcriptomes following Vibrio parahaemolyticus challenge. After challenge for 6 h (h), there were overall 1849 DEGs or differentially expressed genes, including 1542 up-regulated and 307 down-regulated genes, and there was a total of 1048 DEGs, including 510 up-regulated genes and 538 down-regulated genes, after challenge for 12 h. Mitogen-activated protein kinase (MAPK) immune-related pathways, Toll, immune deficiency (IMD), and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) were among the immune pathways where a lot of the DEGs were connected. The expression patterns of 18 chosen immune-related genes were examined utilizing qRT-PCR or quantitative real-time polymerase chain reaction, which revealed that the V. parahaemolyticus infection activated the M. rosenbergii's immune response. Permutational multivariate analysis of variance (PERMANOVA) showed that V. parahaemolyticus infection modulated immune regulation and apoptosis pathways. The gathered information provided new insight into M. rosenbergii's immunity and suggested a novel approach to fight against bacterial infection.


Assuntos
Palaemonidae , Vibrioses , Vibrio parahaemolyticus , Animais , Vibrio parahaemolyticus/fisiologia , Hemócitos , Perfilação da Expressão Gênica , Transcriptoma , Vibrioses/metabolismo , Imunidade , Imunidade Inata/genética
4.
Food Res Int ; 163: 112268, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596179

RESUMO

The present study aimed to investigate the effects of five chitooligosaccharide monomers of different molecular weights on immunomodulatory activity in macrophage-like RAW264.7 cells. The incubation of various chitooligosaccharide monomers enhanced phagocytosis and pinocytosis activity toward Staphylococcus aureus and Escherichia coli in RAW264.7 cells. The incorporation of chitooligosaccharide monomers significantly boosted the generation of reactive oxygen species and reactive nitrogen species, as well as the release of inflammatory cytokines. To further explore the mechanism of inflammation regulated by chitooligosaccharide, the activation inhibitors of NF-кB (CAPE) and TLR-4 (TAK-242) were utilized, the determination data demonstrated that chitobiose suppressed the expression of inflammatory cytokines and NF-кB p65. In addition, the investigation results revealed that the presence of the mannose receptor inhibitor (mannan) suppressed chitohexaose-induced phagocytic activity and inflammatory cytokines. These results suggested that the five distinct chitooligosaccharide monomers had inconsistent effects, the chitobiose and chitohexaose exhibiting the best biological activity in activating RAW264.7 cells, promoting cell proliferation, and increasing non-specific immunity.


Assuntos
Macrófagos , NF-kappa B , NF-kappa B/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo , Citocinas/metabolismo , Quitina/farmacologia , Escherichia coli/metabolismo
5.
Front Immunol ; 13: 1044299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505464

RESUMO

Hemolytic disease in grass carp (C. idella) leads to hemolysis in vivo, releasing damage-related molecular patterns (DAMPs) hemoglobin (Hb; which is rapidly oxidized to Hb-Fe3+ and Hb-Fe4+) and generating a high level of reactive oxygen species (ROS) that cause oxidative damage. However, the effect of cell-free Hb on tissue cells of grass carp has yet to be elucidated. In this study, western blotting (WB) and immunofluorescence analysis (IFA) results showed that PHZ-induced hemolysis caused Hb and iron accumulation, increased the production of ROS and resulted in apoptosis in head kidney and middle kidney of the grass carp. Quantitative real-time PCR (qRT-PCR), WB, and IFA revealed that PHZ-induced hemolysis significantly upregulated the expression of inflammation-related genes through activation of the NF-κB signaling pathway. To further explore the effect of Hb, three forms of Hb (Hb, MetHb, and FerrylHb) were prepared. The incubation with the different forms of Hb and heme markedly upregulated the expression of cytokine genes through NF-κB signaling pathway, which was further confirmed by a specific inhibitor (caffeic acid phenethyl ester, CAPE). Flow cytometry analysis data showed that the stimulation of different forms of Hb and heme increased the production of ROS, and resulted in apoptosis. In summary, our data suggest that the excess cell-free Hb released during hemolysis modulates the inflammatory response through activation of the NF-κB signaling pathway and causes cell oxidative damage and apoptosis.


Assuntos
Carpas , Hemoglobinas , NF-kappa B , Animais , Heme , Hemólise , Inflamação , Estresse Oxidativo , Transdução de Sinais
6.
Fish Shellfish Immunol ; 130: 103-113, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36044935

RESUMO

Alginate oligosaccharide (AOS) is widely used in agriculture because of its many excellent biological properties. However, the possible beneficial effects of AOS and their underlying mechanisms are currently not well known in grass carp (Ctenopharyngodon idellus). Here, grass carp were fed diets supplemented with 5, 10, or 20 g/kg AOS for six weeks. HE and PAS staining showed that the diets of AOS significantly increased the number of goblet cells in the intestinal. According to transcriptome and quantitative real-time PCR (qRT-PCR) data, AOS-supplemented diets activated the expression of fat metabolism-related pathways and genes. The 16S rRNA sequencing results showed that supplementation with AOS affected the distribution and abundance of the gut bacterial assembly. qRT-PCR and activity assays revealed that the AOS diets significantly increased the antioxidant resistance in gut of grass carp, and down-regulated the expression of inflammatory and up-regulated anti-inflammatory cytokines. Finally, the Aeromonas hydrophila infection assay suggested that the mortality in the groups fed dietary AOS was slightly lower than that in the control. Therefore, supplementing the diet of grass carp with an appropriate amount of AOS can improve fat metabolism and immune responses and alter the intestinal bacterial community, which may help to fight bacterial infection.


Assuntos
Carpas , Doenças dos Peixes , Microbioma Gastrointestinal , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila/fisiologia , Alginatos , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Carpas/metabolismo , Citocinas , Dieta/veterinária , Proteínas de Peixes/genética , Imunidade Inata , Oligossacarídeos , RNA Ribossômico 16S
7.
Front Immunol ; 13: 843662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265088

RESUMO

Intravascular hemolysis is a fundamental feature of hemorrhagic venereal infection or tissue and releases the endogenous damage-associated molecular pattern hemoglobin (Hb) into the plasma or tissues, which results in systemic inflammation, vasomotor dysfunction, thrombophilia, and proliferative vasculopathy. However, how the cytotoxic Hb affects the tissues of grass carp remains unclear. Here, we established a hemolysis model in grass carp by injecting phenylhydrazine (PHZ). The data revealed that the PHZ-induced hemolysis increased the content of Hb and activated the antioxidant system in plasma. The histopathology analysis data showed that the PHZ-induced hemolysis increased the accumulation of Hb and iron both in the head and middle kidney. The results of quantitative real-time PCR (qRT-PCR) detection suggested that the hemolysis upregulated the expressions of iron metabolism-related genes. In addition, the immunofluorescence and immunohistochemistry data revealed that the hemolysis caused an obvious deposition of collagen fiber, malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE) accumulation and increased the content of oxidative-related enzymes such as ß-galactosidase (ß-GAL), lipid peroxide (LPO), and MDA in both the head and middle kidney. Furthermore, the PHZ-induced hemolysis significantly increased the production of reactive oxygen species (ROS), which resulted in apoptosis and modulated the expressions of cytokine-related genes. Taken together, excess of Hb released from hemolysis caused tissue oxidative damage, which may be associated with ROS and inflammation generation.


Assuntos
Carpas , Ração Animal/análise , Animais , Carpas/metabolismo , Dieta , Hemoglobinas/metabolismo , Hemólise , Inflamação , Ferro , Estresse Oxidativo , Espécies Reativas de Oxigênio
8.
Fish Shellfish Immunol ; 119: 96-104, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34614395

RESUMO

It is widely known that red blood cells (RBCs) are responsible for respiration and the transport of gas. However, recent reports have also described the immune properties of RBCs, therefore creating new understanding for the functionality of RBCs. However, little is known about the immunological role of RBCs in bony fish. In this study, we used RBCs from Clarias fuscus as a model and demonstrate that these cells exhibited phagocytic ability with both latex beads and bacteria. Scanning electron microscopy and transmission electron microscopy provided visual confirmation of the phagocytotic process in RBCs. In addition, we used flow cytometry and fluorescence microscopy to analyse the rate of phagocytosis in RBCs. We found that RBCs exhibited stable phagocytotic ability with latex beads ranging from 0.5 to 1.0 µm in size. In response to bacterial stimulation, RBCs produced reactive oxygen species (ROS) and nitric oxide synthase (NOS), which are harmful to bacteria. RBCs also have an antioxidant system. Under conditions of oxidative stress, the expression levels of antioxidant enzymes, and particularly those of superoxide dismutase(SOD) increased significantly. Our results show that the erythrocytes of bony fish are phagocytic and also produce ROS which are toxic to bacteria. In addition, RBCs have an antioxidant system that removes excess ROS production to protect cells from oxidative damage.


Assuntos
Antioxidantes , Explosão Respiratória , Animais , Antibacterianos/farmacologia , Eritrócitos , Fagocitose , Espécies Reativas de Oxigênio
9.
Fish Shellfish Immunol ; 119: 19-30, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34560286

RESUMO

The regulation of host redox homeostasis is critically important in the immune response to pathogens. The "mammalian sterile 20-like" kinase 2 (MST2) has been shown to play a role in apoptosis, cell proliferation, and cancer; however, few studies have examined its ability to modulate redox homeostasis during innate immunity, especially in teleost fish. In this study, we cloned the MST2 gene of Ctenopharyngodon idella (CiMST2) and analyzed its tissue distribution. CiMST2 was present in most of the studied tissues, and it was most highly expressed in brain tissue. Expression patterns analysis revealed that MST2 mRNA and protein were significantly up-regulated under bacterial infection, suggesting that it is involved in the immune response. Bacterial stimulation significantly increased the level of antioxidases. To explore the interplay between CiMST2 and antioxidant regulation, we examined the effects of CiMST2 overexpression and conducted RNA interference assays in vitro. CiMST2 overexpression significantly increased the expression levels of nuclear factor E2-related factor 2 (Nrf2) and other antioxidases and vice versa, revealing that CiMST2 regulated host redox homeostasis via Nrf2-antioxidant responsive element (ARE) signaling. Overall, our findings provide a new perspective on the role of MST2 in innate immunity in teleosts as well as insights that will aid the prevention and control of disease in the grass carp farming industry.


Assuntos
Infecções Bacterianas , Carpas , Doenças dos Peixes , Ração Animal/análise , Animais , Antioxidantes , Carpas/genética , Dieta , Proteínas de Peixes/genética , Imunidade Inata/genética , Fator 2 Relacionado a NF-E2
10.
Fish Shellfish Immunol ; 112: 159-167, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33017637

RESUMO

The red blood cells (RBCs) of fish make up around 95% of the total peripheral blood cells, and the long-held paradigm is that RBCs are mainly responsible for transporting oxygen. Previous studies have showed that the RBCs can be involved in the immune response against bacterial infection; however, this mechanism remains enigmatic. Here, we explored the structure of grass carp RBCs (GcRBCs). The results showed that the GcRBCs released a pseudopodia-like structure when grown in a 24-well plate, and the transmission electron microscopy (TEM) result showed that GcRBCs contained some organelle-like structures. To further verify the organelle-like structures might be the mitochondria and lysosome which similar to other immune cells, a fluorescent labeling assay was used to verify it. To decipher the antibacterial immunity of GcRBCs, transcriptomic profiling of grass carp RBCs after the incubation with E. coli was analyzed. The results showed that there were 4099 differently expressed genes (DEGs) of GcRBCs upon E. coli incubation, including 2041 up-regulated and 2058 down-regulated genes. In addition, to validate our transcriptomic data, we checked the expression of several cytokines, such as CCL4, CCL20, IL4, IL12 and IFN-α, and the results showed that all the selected gens were significantly up-regulated after E. coli incubation. Furthermore, E. coli incubation induced hemoglobin oxidation and increased the heme in GcRBCs, which further activated the expression of heme oxygenase 1 (HO-1), autophagy related genes 5 (ATG5), and ferritin. In contrast, E. coli incubation inhibited the expression of Ferroportin-1 (FPN1), which increased intracellular iron levels, induced Fenton reaction to release reactive oxygen species (ROS), and activated the ferroptosis signaling pathway in GcRBCs. Herein, we demonstrate that E. coli can induce teleost RBCs cell death through an iron-mediated ferroptosis pathway, which sheds new light on the interaction between bacteria and teleost RBCs.


Assuntos
Carpas , Eritrócitos/imunologia , Escherichia coli/fisiologia , Ferroptose/imunologia , Doenças dos Peixes/imunologia , Transcriptoma/imunologia , Animais , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Doenças dos Peixes/microbiologia , Perfilação da Expressão Gênica/veterinária
11.
Fish Shellfish Immunol ; 112: 168-178, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32927052

RESUMO

Heme oxygenase (HO)-1, a rate-limiting enzyme in heme catabolism, results in the formation of equivalent amounts of biliverdin (BV), carbon monoxide (CO) and ferrous iron (Fe2+). Previous studies have revealed that HO-1 plays an important role in immune responses. However, the mechanism underlying the immune responses against bacterial infection of teleost HO-1 remains enigmatic. To decipher the mechanisms, we have cloned and characterized the HO-1 gene of grass carp (designated as GcHO-1) in this research. The results showed that the open reading frame (ORF) of GcHO-1 was 819 bp, which encoded a putative protein of 272 amino acids. The deduced amino acid sequence phylogenetically shared the highest identity with other teleosts, and contained two domains of heme-oxygenase and a single-pass transmembrane domain. The mRNA expressions of GcHO-1 in healthy grass carp have widely existed in examined tissues in the following order of spleen > head-kidney > middle head-kidney > intestines > liver > gills > heart > muscle > brain. Besides, the mRNA and protein transcription of GcHO-1 were both significantly up-regulated in the liver and head-kidney tissues after Staphylococcus aureus and Aeromonas hydrophila infection. In addition, overexpression of GcHO-1 in kidney cell line (CIK) cells of grass carp could reduce the expression of inflammatory cytokines (IL-1ß, IL-8, TNFα, CCL1 and IL-6). Herein, we demonstrate that GcHO-1 plays an anti-inflammatory role in innate immunity. Our results shed new light on the mechanisms underlying the antibacterial immunity of teleost.


Assuntos
Carpas/genética , Carpas/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/imunologia , Imunidade Inata/genética , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Doenças dos Peixes/microbiologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Heme Oxigenase-1/química , Filogenia , Alinhamento de Sequência/veterinária , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/fisiologia
12.
Front Immunol ; 12: 766970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095842

RESUMO

In the lumen of blood vessels, there are large numbers of erythrocytes, which are approximately 95% of the total blood cells. Although the function of erythrocytes is to transport oxygen in the organism, recent studies have shown that mammalian and teleost erythrocytes are involved in the immune response against bacterial infections. However, the immune mechanisms used by avian erythrocytes are not yet clear. Here, we demonstrated that erythrocytes from goose have the ability to phagocytose as well as conduct antimicrobial activity. Firstly, we revealed the phagocytosis or adhesion activity of goose erythrocytes for latex beads 0.1-1.0 µm in diameter by fluorescence microscopy, and scanning and transmission electron microscopy. The low cytometry results also proved that goose erythrocytes had a wide range of phagocytic or adhesion activity for different bacteria. Followed, the low cytometry analysis data further explored that the goose erythrocytes contain the ability to produce reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) in response to bacterial stimulation, and also up-regulated the expression of NOX family includes NOX1 and NOX5. Finally, we also found that goose erythrocytes showed a powerful antibacterial activity against all the three bacteria, meanwhile the stimulation of three kinds of bacteria up-regulated the expression of inflammatory factors, and increased the production of antioxidant enzymes to protect the cells from oxidative damage. Herein, our results demonstrate that goose Erythrocytes possess a certain phagocytic capacity and antioxidant system, and that the antimicrobial activity of erythrocytes can occurred through the production of unique respiratory burst against foreign pathogenic bacteria, which provides new clues to the interaction between bacteria and avian erythrocytes.


Assuntos
Antibacterianos/imunologia , Eritrócitos/imunologia , Gansos/imunologia , Fagocitose/imunologia , Explosão Respiratória/imunologia , Animais , Antioxidantes/metabolismo , Bactérias/imunologia , Aderência Bacteriana/imunologia , Imunidade/imunologia , Inflamação/imunologia , Estresse Oxidativo/imunologia , Fagócitos/imunologia , Espécies Reativas de Oxigênio/imunologia
13.
Fish Shellfish Immunol ; 106: 8-20, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32717323

RESUMO

Functional ingredients such as Bacillus subtilis are used in aquaculture to improve fish condition, modulate microbiota and promote a healthy intestinal system. However, the underlying mechanisms of grass carp treated with B. subtilis are not fully characterized. This study investigated the gut microbes of grass carp after treated with B. subtilis H2 (106 CFU/mL) and Aeromonas hydrophila (106 CFU/mL). The intestinal flora was found that the dominant bacterial phyla identified in all samples were Proteobacteria, Actinobacteria, Fusobacteria, Bacteroidetes and Acidobacteria. Compared with the control group, the relative abundance of Proteobacteria and Bacteroidetes in B. subtilis group were significantly increased. In addition, the relative abundances of Aeromonas and Shewanella in A. hydrophila group were more than the control group. For the intestinal transcriptomic profiling of the grass carp treated with B. subtilis H2, 824 different expressed genes (DEGs) between the B. subtilis H2 treated and non-treated groups were detected, including 365 up-regulated and 459 down-regulated genes. Six DEGs were randomly selected for further validation by quantitative real-time RT-PCR (qRT-PCR) and the results were consistent with the RNA-seq data. Additionally, eight immunomodulatory genes (IL-4, IL-11, IFN-α, CSF, FOSB, MAPK12b, IGHV3-11 and IGHV3-21) were significantly up-regulated after treated with B. subtilis H2. Furthermore, almost all the lipid metabolism-associated genes were significantly up-regulated after treated with B. subtilis H2 according to the lipid metabolism pathways. Eleven lipid metabolism-associated genes were selected by qRT-PCR, which showed that the expressions of almost all the selected genes were increased, especially Apob-48, ABCG8 and DGAT. Taken together, our results support that B. subtilis could modulate the immune response, fat metabolism and bacterial assembly in the gut of grass carp.


Assuntos
Bacillus subtilis/química , Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Metabolismo dos Lipídeos , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Animais , Bactérias/isolamento & purificação , DNA Bacteriano/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Doenças dos Peixes/genética , Proteínas de Peixes/imunologia , Microbioma Gastrointestinal , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Probióticos/administração & dosagem , Probióticos/metabolismo , RNA Ribossômico 16S/análise , RNA-Seq/veterinária , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...