Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Image Process ; 33: 2587-2598, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507381

RESUMO

The success of existing cross-modal retrieval (CMR) methods heavily rely on the assumption that the annotated cross-modal correspondence is faultless. In practice, however, the correspondence of some pairs would be inevitably contaminated during data collection or annotation, thus leading to the so-called Noisy Correspondence (NC) problem. To alleviate the influence of NC, we propose a novel method termed Consistency REfining And Mining (CREAM) by revealing and exploiting the difference between correspondence and consistency. Specifically, the correspondence and the consistency only be coincident for true positive and true negative pairs, while being distinct for false positive and false negative pairs. Based on the observation, CREAM employs a collaborative learning paradigm to detect and rectify the correspondence of positives, and a negative mining approach to explore and utilize the consistency. Thanks to the consistency refining and mining strategy of CREAM, the overfitting on the false positives could be prevented and the consistency rooted in the false negatives could be exploited, thus leading to a robust CMR method. Extensive experiments verify the effectiveness of our method on three image-text benchmarks including Flickr30K, MS-COCO, and Conceptual Captions. Furthermore, we adopt our method into the graph matching task and the results demonstrate the robustness of our method against fine-grained NC problem. The code is available on https://github.com/XLearning-SCU/2024-TIP-CREAM.

2.
IEEE Trans Pattern Anal Mach Intell ; 46(4): 2139-2150, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37966936

RESUMO

Robust multi-view learning with incomplete information has received significant attention due to issues such as incomplete correspondences and incomplete instances that commonly affect real-world multi-view applications. Existing approaches heavily rely on paired samples to realign or impute defective ones, but such preconditions cannot always be satisfied in practice due to the complexity of data collection and transmission. To address this problem, we present a novel framework called SeMantic Invariance LEarning (SMILE) for multi-view clustering with incomplete information that does not require any paired samples. To be specific, we discover the existence of invariant semantic distribution across different views, which enables SMILE to alleviate the cross-view discrepancy to learn consensus semantics without requiring any paired samples. The resulting consensus semantics remains unaffected by cross-view distribution shifts, making them useful for realigning/imputing defective instances and forming clusters. We demonstrate the effectiveness of SMILE through extensive comparison experiments with 13 state-of-the-art baselines on five benchmarks. Our approach improves the clustering accuracy of NoisyMNIST from 19.3%/23.2% to 82.7%/69.0% when the correspondences/instances are fully incomplete. We will release the code after acceptance.

3.
Nat Commun ; 14(1): 6045, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770437

RESUMO

Single-cell multi-omics data integration aims to reduce the omics difference while keeping the cell type difference. However, it is daunting to model and distinguish the two differences due to cell heterogeneity. Namely, even cells of the same omics and type would have various features, making the two differences less significant. In this work, we reveal that instead of being an interference, cell heterogeneity could be exploited to improve data integration. Specifically, we observe that the omics difference varies in cells, and cells with smaller omics differences are easier to be integrated. Hence, unlike most existing works that homogeneously treat and integrate all cells, we propose a multi-omics data integration method (dubbed scBridge) that integrates cells in a heterogeneous manner. In brief, scBridge iterates between i) identifying reliable scATAC-seq cells that have smaller omics differences, and ii) integrating reliable scATAC-seq cells with scRNA-seq data to narrow the omics gap, thus benefiting the integration for the rest cells. Extensive experiments on seven multi-omics datasets demonstrate the superiority of scBridge compared with six representative baselines.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Análise da Expressão Gênica de Célula Única , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Análise de Célula Única/métodos , Multiômica
4.
IEEE Trans Pattern Anal Mach Intell ; 45(1): 1055-1069, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35230947

RESUMO

The success of existing multi-view clustering methods heavily relies on the assumption of view consistency and instance completeness, referred to as the complete information. However, these two assumptions would be inevitably violated in data collection and transmission, thus leading to the so-called Partially View-unaligned Problem (PVP) and Partially Sample-missing Problem (PSP). To overcome such incomplete information challenges, we propose a novel method, termed robuSt mUlti-view clusteRing with incomplEte information (SURE), which solves PVP and PSP under a unified framework. In brief, SURE is a novel contrastive learning paradigm which uses the available pairs as positives and randomly chooses some cross-view samples as negatives. To reduce the influence of the false negatives caused by random sampling, SURE is with a noise-robust contrastive loss that theoretically and empirically mitigates or even eliminates the influence of the false negatives. To the best of our knowledge, this could be the first successful attempt that simultaneously handles PVP and PSP using a unified solution. In addition, this could be one of the first studies on the noisy correspondence problem (i.e., the false negatives) which is a novel paradigm of noisy labels. Extensive experiments demonstrate the effectiveness and efficiency of SURE comparing with 10 state-of-the-art approaches on the multi-view clustering task.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...