Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Gene Ther ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38920074

RESUMO

INTRODUCTION: The Ribonucleoside-diphosphate Reductase subunit M2 (RRM2) is known to be overexpressed in various cancers, though its specific functional implications remain unclear. This aims to elucidate the role of RRM2 in the progression of Lung Adenocarcinoma (LUAD) by exploring its involvement and potential impact. METHODS: RRM2 data were sourced from multiple databases to assess its diagnostic and prognostic significance in LUAD. We evaluated the association between RRM2 expression and immune cell infiltration, analyzed its function, and explored the effects of modulating RRM2 expression on LUAD cell characteristics through laboratory experiments. RESULTS: RRM2 was significantly upregulated in LUAD tissues and cells compared to normal counterparts (p<0.05), with rare genetic alterations noted (approximately 2%). This overexpression clearly distinguished LUAD from normal tissue (area under the curve (AUC): 0.963, 95% confidence intervals (CI): 0.946-0.981). Elevated RRM2 expression was significantly associated with adverse clinicopathological characteristics and poor prognosis in LUAD patients. Furthermore, a positive association was observed between RRM2 expression and immune cell infiltration. Pathway analysis revealed a critical connection between RRM2 and the cell cycle signaling pathway within LUAD. Targeting RRM2 inhibition effectively suppressed LUAD cell proliferation, migration, and invasion while promoting apoptosis. This intervention also modified the expression of several crucial proteins, including the downregulation of CDC25A, CDC25C, RAD1, Bcl-2, and PPM1D and the upregulation of TP53 and Bax (p < 0.05). CONCLUSION: Our findings highlight the potential utility of RRM2 expression as a biomarker for diagnosing and predicting prognosis in LUAD, shedding new light on the role of RRM2 in this malignancy.

2.
Cryobiology ; 98: 119-126, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33290735

RESUMO

Chorispora bungeana (C. bungeana) is a rare alpine subnival species that is highly tolerant to low temperature stress. Phospholipase D (PLD) is a key enzyme involved in membrane phospholipid catabolism during plant growth and the stress response. In this study, one member of CbPLD gene family, CbPLDδ, was cloned from C. bungeana and was introduced into tobacco. This gene encodes an 864-amino acid protein with two catalytic HxKxxxxD motifs which are essential for phospholipase D activity. After the CbPLDδ gene is fused with the vector containing the GFP tag, subcellular localization showed that CbPLDδ was predominately located in the cell membrane. RT-qPCR and histochemical GUS assays showed that CbPLDδ gene was induced by low temperature and expressed predominantly in leaf and root. Compared with wild-type tobacco, CbPLDδ transgenic tobacco showed higher activities of antioxidant enzymes, and lower levels of malonidiadehyde and electrolyte leakage under low temperature stress. These results reflected that CbPLDδ is involved in the response to low temperature stress, and has the potential to improve the low temperature tolerance of plants.


Assuntos
Brassicaceae , Criopreservação , Brassicaceae/genética , Clonagem Molecular , Temperatura Baixa , Criopreservação/métodos , Proteínas de Plantas/genética , Estresse Fisiológico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...