Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(27): 10893-10900, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38922295

RESUMO

The broad applications of ion mobility spectrometry (IMS) demand good sensitivity and resolving power for ion species with different reduced mobilities (K0). In this work, a new Tyndall-Powell gate (TPG) gating method for combining ion enrichment, mobility discrimination reduction, and temporal compression into a single gating process is proposed to improve IMS analysis performance. The two-parallel-grid structure and well-confined gate region of the TPG make it convenient to spatiotemporally vary the electric fields within and around the gate region. Under the new gating method, a potential wave is applied on TPG grid 1 to enrich ions within the ionization region adjacent to the TPG during the gate-closed state; meanwhile, a potential wave is applied on TPG grid 2 to enhance mobility discrimination reduction and temporal compression simultaneously during the gate-open state. For triethyl phosphate (TEP) and dimethyl methylphosphonate mixtures, product ion peaks within K0 of 1.9 to 1.1 cm2/V·s exhibit a 19-fold increase in ion current compared to the traditional TPG gating method, while maintaining a resolving power of 85. The estimated limit of detection for the TEP dimer is lowered from 8 ppb to 135 ppt. The new gating method can be applied to other TPG-based IMS systems to enhance their performance in analyzing complex samples.

2.
Anal Chem ; 96(9): 3979-3987, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38391328

RESUMO

Photoionization (PI) is an efficient ionization source for ion mobility spectrometry (IMS) and mass spectrometry. Its hyphenation with IMS (PI-IMS) has been employed in various on-site analysis scenarios targeting a wide range of compounds. However, the signal intensity and linear dynamic range of PI-IMS at ambient pressure usually do not follow the Beer-Lambert law predictions, and the factors causing that negative deviation remain unclear. In this work, a variable pressure PI-IMS system was developed to examine the ion loss effects from factors like ion recombination and space charge by varying its working pressure from 1 to 0.1 bar. Assisted by theoretical modeling, it was found that ion recombination could contribute up to 90% of signal intensity loss for ambient pressure PI-IMS setups. Lowering the pressure and increasing the electric field in PI-IMS helped suppress the ion recombination process and thus an optimal pressure Poptimal appeared for best signal intensity, despite the decreased net ion number density and the increased space charge effect. A simplified theoretical equation taking ion recombination as the primary ion loss factor was derived to link Poptimal with analyte concentration and electric field in PI-IMS, enabling a swift optimization of the PI-IMS performance. For example, compared to ambient pressure, PI-IMS at a Poptimal of 0.4 bar provided a signal intensity increment of more than 400% for 0.716 ppmv toluene and also expanded the linear dynamic range by more than two times. Revealing factors influencing the PI-IMS response would also benefit the applications of other chemical ionization sources in IMS or mass spectrometry (MS).

3.
J Pharm Anal ; 13(4): 412-420, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37181293

RESUMO

Exhaled ammonia (NH3) is an essential noninvasive biomarker for disease diagnosis. In this study, an acetone-modifier positive photoionization ion mobility spectrometry (AM-PIMS) method was developed for accurate qualitative and quantitative analysis of exhaled NH3 with high selectivity and sensitivity. Acetone was introduced into the drift tube along with the drift gas as a modifier, and the characteristic NH3 product ion peak of (C3H6O)4NH4+ (K0 = 1.45 cm2/V·s) was obtained through the ion-molecule reaction with acetone reactant ions (C3H6O)2H+ (K0 = 1.87 cm2/V·s), which significantly increased the peak-to-peak resolution and improved the accuracy of exhaled NH3 qualitative identification. Moreover, the interference of high humidity and the memory effect of NH3 molecules were significantly reduced via online dilution and purging sampling, thus realizing breath-by-breath measurement. As a result, a wide quantitative range of 5.87-140.92 µmol/L with a response time of 40 ms was achieved, and the exhaled NH3 profile could be synchronized with the concentration curve of exhaled CO2. Finally, the analytical capacity of AM-PIMS was demonstrated by measuring the exhaled NH3 of healthy subjects, demonstrating its great potential for clinical disease diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...