Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1292: 342259, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309842

RESUMO

BACKGROUND: Heavy metal pollution has become one of the world's most important environmental pollution, especially Hg2+ is enriched, it is easy to enter the human body through the food chain, bind to the sulfhydryl group in the protein, cause mercury poisoning. Traditional methods for detecting Hg2+ have obvious drawbacks, such as poor selectivity and long detection time. Fluorescence detection has attracted attention because of its good sensitivity and specificity detection ability. In previously reported probes for detecting Hg2+, Cu2+ often interferes. Therefore, it is of great practical significance to synthesize a fluorescent probe that can distinguish between Hg2+ and Cu2+. RESULTS: We have successfully synthesized the probe DFS, a fluorescent probe that can differentially detect Hg2+ and Cu2+, and the probe DFS has good selectivity and anti-interference ability for Hg2+ and Cu2+. The fluorescence intensity at 530 nm increased rapidly when Hg2+ was detected; during the Cu2+ detection, the fluorescence intensity at 636 nm gradually decreased, fluorescence quenching occurred, and the detection limits of Hg2+ and Cu2+ were 7.29 × 10-9 M and 2.13 × 10-9 M, respectively. Through biological experiments, it was found that probe DFS can complete the fluorescence imaging of Hg2+ and Cu2+ in Staphylococcus aureus and HUVEC cells, which has certain research value in the field of environmental monitoring and microbiology, and the probe DFS has low cytotoxicity, so it also has broad application prospects in the field of biological imaging. In addition, the probe DFS also has good applicability for Hg2+ and Cu2+ detection in actual samples. SIGNIFICANCE AND NOVELTY: This is a fluorescent probe that can distinguish between Hg2+ and Cu2+, the fluorescence emission peak appears at 530 nm when Hg2+ is detected; when detecting Cu2+, fluorescence quenching occurs at 636 nm, the fluorescence emission peak distance between Hg2+ and Cu2+ differs by 106 nm. This reduces mutual interference between Hg2+ and Cu2+ during detection, it provides a new idea for the detection of Hg2+ and Cu2+.


Assuntos
Corantes Fluorescentes , Mercúrio , Humanos , Corantes Fluorescentes/análise , Análise de Alimentos , Mercúrio/análise , Sensibilidade e Especificidade , Bactérias , Espectrometria de Fluorescência
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123837, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38184879

RESUMO

As the second most abundant transition metal element in the human body, zinc ions play an important role in the normal growth and development of the human body. We have successfully synthesized a near-infrared fluorescent probe with FRET effect for the detection of Zn2+. Probe DR6G has good selectivity and anti-interference ability for Zn2+. When Zn2+ is added to the probe DR6G solution, it responds completely within seconds, releasing red fluorescence with a detection limit of 2.02 × 10-8 M. As the main product of ATP hydrolysis, PPi is indispensable in various metabolic activities in cells and the human body. Due to the strong binding ability of Zn2+ and PPi, it is easy to form ZnPPi precipitation, so we added PPi to the solution to complete the Zn2+ detection, and realized the continuous detection of PPi, and the detection limit was 2.06 × 10-8 M. Since Zn2+ and PPi play an important role in vivo, it is of great practical significance to design and synthesize a fluorescent probe that can continuously detect Zn2+ and PPi. Biological experiments have shown that the probe DR6G has low cytotoxicity and can complete the detection of exogenous Zn2+ and PPi in cells and living mice in vitro. Bacterial experiments have shown that the DR6G probe also has certain research value in the field of environmental monitoring and microbiology. Due to the constant variation of the fluorescence signals of Zn2+ and PPi during detection, we designed the logic gate program. In practical applications, the probe DR6G can quantitatively detect Zn2+ in zinc-containing oral liquids and qualitatively detect PPi in toothpaste.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Camundongos , Animais , Humanos , Espectrometria de Fluorescência , Células HeLa , Zinco/metabolismo
3.
J Mater Chem B ; 12(5): 1344-1354, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38230621

RESUMO

Most acute cardiovascular and cerebrovascular diseases are caused by atherosclerotic plaque rupture leading to blocked arteries. Targeted nanodelivery systems deliver imaging agents or drugs to target sites for diagnostic imaging or the treatment of various diseases, providing new insights for the detection and treatment of atherosclerosis. Based on the pathological characteristics of atherosclerosis, a hydrogen peroxide-sensitive bimodal probe PPIS@FC with integrated diagnosis and treatment function was designed. Bimodal probes Fe3O4@SiO2-CDs (FC) were prepared by coupling superparamagnetic iron oxide and carbon quantum dots synthesized with citric acid, and self-assembled with hydrogen peroxide stimulus-responsive amphiphilic block polymer PGMA-PEG modified with simvastatin (Sim) and target molecule ISO-1 to obtain drug-loaded micelles PGMA-PEG-ISO-1-Sim@FC (PPIS@FC). PPIS@FC could release Sim and FC in an H2O2-triggered manner, achieving the goal of releasing drugs using the special microenvironment at the plaque. At the same time, in vivo magnetic resonance and fluorescence imaging results proved that PPIS@FC possessed targeting ability, magnetic resonance imaging and fluorescence imaging effects. The results of the FeCl3 and ApoE-/- model showed that PPIS@FC had an excellent therapeutic effect and in vivo safety. Therefore, dual-modality imaging drug delivery systems with ROS response will become a promising strategy for the diagnosis and treatment of atherosclerosis.


Assuntos
Aterosclerose , Nanopartículas , Placa Aterosclerótica , Humanos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/uso terapêutico , Inibidores da Bomba de Prótons/uso terapêutico , Dióxido de Silício/uso terapêutico , Aterosclerose/diagnóstico por imagem , Aterosclerose/tratamento farmacológico , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/tratamento farmacológico
4.
Anal Methods ; 15(40): 5329-5340, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37791492

RESUMO

We have successfully synthesized a near-infrared fluorescent probe for the continuous detection of copper and sulfur ions. The probe has good selectivity and anti-interference ability against Cu2+ and S2-. The results show that after adding Cu2+ to the DL solution of the near-infrared fluorescent probe, Cu2+ forms a [DL + Cu2+] complex with the probe, which leads to fluorescence quenching due to the paramagnetism of Cu2+. The probe can be used for the quantitative detection of Cu2+ with a detection limit of 1.26 × 10-9 M. According to the Job's plot curve the binding stoichiometry between DL and Cu2+ is 1 : 1. Subsequently, S2- was added to the [DL + Cu2+] solution, because the precipitation dissolution equilibrium constant of CuS was Ksp = 1.27 × 10-36, so the binding capacity between Cu2+ and S2- was stronger, CuS precipitation was formed, and red fluorescence was re-released, and the quantitative detection of S2- was realized, and the detection limit was 3.50 × 10-8 M. Through bacterial imaging experiments, we found that the probe can accomplish the fluorescence imaging experiments of Staphylococcus aureus, indicating that the probe has good biopenetration and biocompatibility, and has application prospects in bioimaging and environmental monitoring. In addition, the probe DL has good suitability for Cu2+ and S2- detection in real samples.


Assuntos
Cobre , Corantes Fluorescentes , Cobre/metabolismo , Espectrometria de Fluorescência/métodos , Imagem Óptica/métodos , Microscopia de Fluorescência/métodos
5.
ACS Appl Mater Interfaces ; 15(37): 43374-43386, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37669139

RESUMO

Atherosclerosis (AS), a leading cause of death worldwide, is a chronic inflammatory disease rich in lipids and reactive oxygen species (ROS) within plaques. Therefore, lowering lipid and ROS levels is effective in treating AS and reducing AS-induced mortality. In this study, an intelligent biomimetic drug delivery system that specifically responded to both shear stress and ROS microenvironment was developed, consisting of red blood cells (RBCs) and cross-linked polyethyleneimine nanoparticles (SA PEI) loaded with a lipid-lowering drug simvastatin acid (SA), and RBCs were self-assembled with SA PEI to obtain biresponsive SA PEI@RBCs for the treatment of AS. SA PEI could achieve sustained release of SA in response to ROS and reduce ROS and lipid levels to achieve the purpose of treating AS. Shear stress model experiments showed that SA PEI@RBCs could respond to the high shear stress level (100 dynes/cm2) at plaques, realizing the desorption and enrichment of SA PEI and improving the therapeutic efficiency of SA PEI@RBCs. In vitro and in vivo experiments have confirmed that SA PEI@RBCs exhibits better in vivo safety and therapeutic efficacy than SA PEI and free SA. Therefore, shaping SA PEI@RBCs into a biomimetic drug delivery system with dual sensitivity to ROS and shear stress is an effective strategy and treatment to facilitate their delivery into plaques.


Assuntos
Aterosclerose , Nanopartículas , Humanos , Espécies Reativas de Oxigênio , Aterosclerose/tratamento farmacológico , Eritrócitos , Placa Amiloide , Lipídeos
6.
Cell Death Dis ; 14(9): 587, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666813

RESUMO

The tumor microenvironment (TME) is made up of cells and extracellular matrix (non-cellular component), and cellular components include cancer cells and non-malignant cells such as immune cells and stromal cells. These three types of cells establish complex signals in the body and further influence tumor genesis, development, metastasis and participate in resistance to anti-tumor therapy. It has attracted scholars to study immune cells in TME due to the significant efficacy of immune checkpoint inhibitors (ICI) and chimeric antigen receptor T (CAR-T) in solid tumors and hematologic tumors. After more than 10 years of efforts, the role of immune cells in TME and the strategy of treating tumors based on immune cells have developed rapidly. Moreover, ICI have been recommended by guidelines as first- or second-line treatment strategies in a variety of tumors. At the same time, stromal cells is another major class of cellular components in TME, which also play a very important role in tumor metabolism, growth, metastasis, immune evasion and treatment resistance. Stromal cells can be recruited from neighboring non-cancerous host stromal cells and can also be formed by transdifferentiation from stromal cells to stromal cells or from tumor cells to stromal cells. Moreover, they participate in tumor genesis, development and drug resistance by secreting various factors and exosomes, participating in tumor angiogenesis and tumor metabolism, regulating the immune response in TME and extracellular matrix. However, with the deepening understanding of stromal cells, people found that stromal cells not only have the effect of promoting tumor but also can inhibit tumor in some cases. In this review, we will introduce the origin of stromal cells in TME as well as the role and specific mechanism of stromal cells in tumorigenesis and tumor development and strategies for treatment of tumors based on stromal cells. We will focus on tumor-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), tumor-associated adipocytes (CAAs), tumor endothelial cells (TECs) and pericytes (PCs) in stromal cells.


Assuntos
Neoplasias Hematológicas , Neoplasias , Humanos , Células Endoteliais , Células Estromais , Carcinogênese , Microambiente Tumoral
7.
RSC Adv ; 12(54): 34866-34891, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36540220

RESUMO

Harmful metal ions and toxic anions produced in industrial processes cause serious damage to the environment and human health. Chemical sensors are used as an efficient and convenient detection method for harmful ions. Electrospun fiber membranes are widely used in the field of solid-state chemical sensors due to high specific surface area, high porosity, and strong adsorption. This paper reviews the solid-state chemical sensors based on electrospinning technology for the detection of harmful heavy metal ions and toxic anions in water over the past decade. These electrospun fiber sensors have different preparation methods, sensing mechanisms, and sensing properties. The preparation method can be completed by physical doping, chemical modification, copolymerization, surface adsorption and self-assembly combined with electrospinning, and the material can also be combined with organic fluorescent molecules, biological matrix materials and precious metal materials. Sensing performance aspects can also be manifested as changes in color and fluorescence. By comparing the literature, we summarize the advantages and disadvantages of electrospinning technology in the field of ion sensing, and discuss the opportunities and challenges of electrospun fiber sensor research. We hope that this review can provide inspiration for the development of electrospun fiber sensors.

8.
J Mater Chem B ; 10(4): 562-570, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34982089

RESUMO

Atherosclerosis is a global disease with an extremely high morbidity and fatality rate, so it is necessary to develop effective treatments to reduce its impact. In this work, we successfully prepared a multifunctional drug-loaded nano-delivery system with pH-responsive, CD44-targeted, and chemical-photothermal synergistic treatment. Dendritic mesoporous silica nanoparticles capped with copper sulfide (CuS) were synthesized via an oil-water biphase stratification reaction system; these served as the carrier material and encapsulated the anticoagulant drug heparin (Hep). The pH-sensitive Schiff base bond was used as a gatekeeper and targeting agent to modify hyaluronic acid (HA) on the surface of the nanocarrier. HA coating endowed the nanocomposite with the ability to respond to pH and target CD44-positive inflammatory macrophages. Based on this multifunctional nanocomposite, we achieved precise drug delivery, controlled drug release, and chemical-photothermal synergistic treatment of atherosclerosis. The in vitro drug release results showed that the nanocarriers exhibited excellent drug-controlled release properties, and could release drugs in the weakly acidic microenvironment of atherosclerotic inflammation. Cytotoxicity and cell uptake experiments indicated that nanocarriers had low cytotoxicity against RAW 264.7 cells. Modification of HA to nanocarriers can be effectively internalized by RAW 264.7 cells stimulated by lipopolysaccharide (LPS). Combining CuS photothermal treatment with anti-atherosclerosis chemotherapy showed better effects than single treatment in vitro and in vivo. In summary, our research proved that H-CuS@DMSN-NC-HA has broad application prospects in anti-atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Ácido Hialurônico/uso terapêutico , Nanopartículas Multifuncionais/química , Fototerapia , Animais , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Ácido Hialurônico/síntese química , Ácido Hialurônico/química , Concentração de Íons de Hidrogênio , Teste de Materiais , Camundongos , Nanopartículas/química , Tamanho da Partícula , Células RAW 264.7 , Dióxido de Silício/química
9.
Luminescence ; 37(1): 177-185, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34750947

RESUMO

A fluorescent hydrazine hydrate probe (DMA) based on 1,4-dihydropyridine derivatives was designed and synthesized. The fluorescence emission peak of this probe is in the near-infrared region (667 nm), which has good selectivity to hydrazine hydrate and low detection limit (11 nM). Importantly, the probe exhibits aggregation-induced emission (AIE) characteristics. In addition, the probe is prepared with a portable test paper to realize the identification of hydrazine hydrate in the solution and the quantitative detection of hydrazine hydrate gas.


Assuntos
Di-Hidropiridinas , Corantes Fluorescentes , Células HeLa , Humanos , Espectrometria de Fluorescência
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120621, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34802936

RESUMO

We have successfully synthesized NIRF as a near-infrared fluorescence probe for relay recognition of zinc and cyanide ions. The probe possesses well selectivity and anti-interference ability over common ions towards Zn2+ and CN-. The results showed that Zn2+ and the probe formed [NIRF-Zn2+] complex after added Zn2+ into the probe NIRF solution, which emited red fluorescence. The probe can be used for quantitative detection of Zn2+ with a detection limit of 4.61 × 10-8 M. It was determined that the binding stoichiometry between the NIRF and Zn2+ was 1:1 according to the job,s curve. Subsequently, CN- was added to the NIRF-Zn2+ solution, CN- combined with Zn2+ to generate [Zn(CN-)x]1-x due to the stronger binding ability between zinc ion and cyanogen, which lead to the red fluorescence disappeared. The quantitative detection of CN- was realized with a detection limit of 7.9 × 10*7 M. In addition, the probe has excellent specificity and selectivity for Zn2+ and CN-. And the probe can be stable in a wide range of pH. Through biological experiments, we found that it can complete cell imaging in macrophages and imaging of living mice, which has application prospects in Bioimaging. In addition, the probe NIRF has good applicability for Zn2+ and CN- detection in actual samples.


Assuntos
Cianetos , Corantes Fluorescentes , Animais , Camundongos , Espectrometria de Fluorescência , Zinco
11.
Nanoscale ; 13(47): 20013-20027, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34842887

RESUMO

Atherosclerosis is an important pathological basis for cardiovascular disease. Thus, the treatment of atherosclerosis can effectively improve the prognosis and reduce the mortality of cardiovascular diseases. In this study, we developed simvastatin acid (SA)-loaded cross-linked dendrimer nanoparticles (SA PAM) that were adsorbed to the surface of red blood cells (RBCs) to obtain SA PAM@RBCs, a ROS and shear stress dual response drug delivery system for the treatment of atherosclerosis. SA PAM could continuously release SA in an H2O2-triggered manner, and effectively eliminate excessive H2O2 in LPS-stimulated RAW 264.7 cells, achieving the target of using the special microenvironment at the plaque to release drugs. At the same time, the shear sensitive model also proved that only 12.4% of SA PAM detached from the RBCs under low shear stress (20 dynes per cm2), while 61.3% SA PAM desorbed from the RBCs under a high shear stress (100 dynes per cm2) stimulus, revealing that SA PAM could desorb in response to the shear stress stimulus. Both the FeCl3 model and ApoE-/- model showed that SA PAM@RBCs had better therapeutic effects than free SA, and with excellent safety in vivo. Therefore, a biomimetic drug delivery system with dual sensitivity to ROS and shear stress would become a promising strategy for the treatment of atherosclerosis.


Assuntos
Aterosclerose , Dendrímeros , Aterosclerose/tratamento farmacológico , Biônica , Dendrímeros/uso terapêutico , Humanos , Peróxido de Hidrogênio/uso terapêutico , Espécies Reativas de Oxigênio , Estresse Mecânico
12.
Anal Methods ; 13(37): 4238-4245, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34591951

RESUMO

Cell viscosity is related to some diseases, such as diabetes, atherosclerosis, and Alzheimer's disease. These diseases can cause abnormal viscosity of the cell mitochondrial matrix. 1,4-Dihydropyridine (DHP) is an important organic compound with biological activity and is widely used in drug research. However, there are few studies on its optical properties, especially in the design of viscous fluorescent probes. In this study, a fluorescent probe for viscosity detection using 1,4-dihydropyridine as the fluorophore and indole iodide salt as the recognition group was designed and synthesized. The probe has the advantages of a deep-red emission, low cytotoxicity, good biocompatibility and excellent anti-interference ability. In addition, the probe also has the ability to target mitochondria and has been successfully applied to the detection of the viscosity response of HeLa cells and living mice, and has good clinical application potential.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Animais , Di-Hidropiridinas , Células HeLa , Humanos , Camundongos , Viscosidade
13.
Anal Methods ; 13(33): 3667-3675, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34337634

RESUMO

A novel highly active fluorescence chemical sensor (TBQN) for HSO3- was synthesized by the Knoevenagel reaction based on triphenylamine-benzothiazole as a new fluorophore. The probe possessed good selectivity toward HSO3- and anti-interference ability with common ions. The fluorescence and UV-vis spectra of the TBQN probe were significantly changed after the addition of HSO3-. At the same time, the probe solution released obvious green fluorescence. Moreover, the limit of detection for HSO3- was calculated to be 3.19 × 10-8 M. The TBQN probe displayed a rapid response to HSO3- and it took about 3 min to complete the recognition. The detection mechanism is the nucleophilic addition reaction between HSO3- and -C[double bond, length as m-dash]C- in the probe molecule. The π-conjugation and ICT (intramolecular charge transfer) transition in the TBQN molecule were destroyed by this addition, which resulted in the change of the fluorescence before and after the addition of HSO3-. Then, the mechanism was verified by theoretical calculations, 1H NMR measurements and mass spectroscopy. In addition, the probe showed low cytotoxicity and could be used for biological imaging in RAW264.7 cells.


Assuntos
Corantes Fluorescentes , Sulfitos , Aminas , Espectroscopia de Ressonância Magnética , Espectrometria de Fluorescência
14.
Talanta ; 234: 122685, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364484

RESUMO

Cysteine (Cys) plays important physiological roles in the human body, and abnormal Cys concentrations can cause a variety of diseases. Thus, detecting Cys with high selectivity and sensitivity in vivo is important. Near-infrared (NIR) fluorescent probes are widely employed in biological detection because of their excellent optical properties such as minimal damage to biological samples, low background interference and high signal-to-noise ratio. However, few NIR fluorescent probes that can detect Cys over homocysteine (Hcy) and glutathione (GSH) have been reported because of their similar reactivity and structure. In this work, a highly water-soluble NIR probe (CYNA) for detecting Cys whose structure is similar to that of indocyanine green and is based on cyanine skeleton was synthesized and via aromatic nucleophilic substitution-rearrangement (SNAr-rearrangement) to specific recognize the cysteine. The probe showed high selectivity toward Cys and superior biosecurity, excellent biocompatibility and prolonged dynamic imaging. It also has long fluorescence emission wavelength (820 nm), low detection limit (14 nM) and was successfully applied for visualizing Cys in living cells and mice, which has great promise for applications in noninvasive vivo biological imaging and detection.


Assuntos
Cisteína , Corantes Fluorescentes , Animais , Fluorescência , Glutationa , Células HeLa , Homocisteína , Humanos , Camundongos , Imagem Óptica
15.
Mater Sci Eng C Mater Biol Appl ; 126: 112164, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082967

RESUMO

Reactive oxygen species (ROS) are well-known important initiating factors required for atherosclerosis formation, which leads to endothelial dysfunction and plaque formation. Most of the existing antithrombotic therapies use ROS-responsive drug delivery systems, which have a certain therapeutic effect but cannot eliminate excess ROS. Therefore, the atherosclerosis cannot be treated from the source. Moreover, nanoparticles are easily cleared by the immune system during blood circulation, which is not conducive to long-term circulation. In this study, we developed an intelligent response system that could simultaneously respond to ROS and the shear stress microenvironment of atherosclerotic plaques. This system was formed by red blood cells (RBCs) and simvastatin-loaded micelles (SV MC). The micelles consisted of poly(glycidyl methacrylate)-polypropylene sulfide (PGED-PPS). The hydrophobic PPS could react with excess ROS to become hydrophilic, which forced the micelle rupture, resulting in drug release. Most importantly, PPS could also significantly deplete the ROS level, realizing the synergistic treatment of atherosclerosis with drugs and materials. The positively charged SV MC and negatively charged RBCs were self-assembled through electrostatic adsorption to obtain SV MC@RBCs. The SV MC@RBCs could respond to the high shear stress at the atherosclerotic plaque, and the shear stress induced SV MC desorption from the RBC surface. Using biomimetic methods to evade the SV MC@RBCs elimination by the immune system and to reduce the ROS plays a vital role in improving atherosclerosis treatment. The results of in vitro and in vivo experiments showed that SV MC@RBCs could effectively treat atherosclerosis. Moreover, not only does the SV MC@RBCs system avoid the risk of bleeding, but it also has excellent in vivo safety. The study results indicate that the SV MC@RBCs system is a promising therapeutic nanomedicine for treating ROS-related diseases.


Assuntos
Aterosclerose , Nanopartículas , Aterosclerose/tratamento farmacológico , Biomimética , Humanos , Micelas , Espécies Reativas de Oxigênio
16.
Anal Bioanal Chem ; 413(4): 1137-1148, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33404747

RESUMO

By connecting 1,8-naphthalimide and indole sulfonate, a ratio fluorescent probe capable of differential detection of hydrogen sulfite and hypochlorite was synthesized for the first time. It was able to achieve the qualitative detection of HSO3- and ClO- with high sensitivity and selectivity, respectively. It provides a multi-purpose probe and is based on different emission channels without mutual interference. The probe has the advantages of larger Stokes shift (ClO-: 115 nm, HSO3-: 88 nm), longer λem (ClO-: 515 nm, HSO3-: 548 nm) and better water solubility (DMF/PBS = 1:99, v/v). In addition, the probe is a ratio fluorescence probe, which can detect fluorescence intensity with two different emission waves. It provides internal self-calibration, reduces interference from the background and increases detection accuracy. In vitro cytotoxicity and imaging experiments show that the probe can effectively perform the detection of exogenous HSO3- and ClO- in cells. It can also achieve the detection of HSO3- and ClO- in the plasma environment. Because the probe can detect endogenous ClO-, it also has a good prospect for biological application in identifying tumor cells. Graphical abstract.


Assuntos
Corantes Fluorescentes/química , Ácido Hipocloroso/análise , Naftalimidas/química , Neoplasias/diagnóstico por imagem , Sulfitos/análise , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Espectrometria de Fluorescência/métodos
17.
RSC Adv ; 11(17): 10264-10271, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35423512

RESUMO

Copper is an essential element in living systems and plays an important role in human physiology; therefore, methods to detect the concentration of copper ions in living organisms are important. Herein, we report a highly water-soluble naphthalimide-based fluorescent probe that can be used for the detection of Cu2+. The probe, BNQ, has high selectivity and sensitivity. The fluorescence intensity of the probe at 520 nm was visible to the naked eye under a UV lamp; upon the gradual addition of Cu2+, there was a colour change from green to nearly colourless. Furthermore, the detection limit of BNQ for Cu2+ was 45.5 nM. The detection mechanism was investigated using a Job's plot and density functional theory (DFT) calculations. In addition, owing to great biocompatibility, we were able to successfully use BNQ to detect Cu2+ in living HeLa cells with low toxicity.

18.
Luminescence ; 35(7): 1010-1016, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32406126

RESUMO

A fluorescent probe to detect biothiols (GSH/Hcy/Cys) was synthesized with benzothiazole as the fluorophore and nitromethane as the recognition group. The recognition mechanism of the fluorescent probe was deduced. It was found that a nitroalkene in the molecule was used as the recognition site for this probe and reacted with the mercapto group of the biothiols by electrophilic addition, significantly enhancing the fluorescent signal. Experimental results showed that the fluorescent probe had a low detection limit, good selectivity, strong anti-interference ability, and good naked eye recognition. The probe could detect biothiols (GSH/Hcy/Cys) in 20% organic solvent, with detection limits of 0.33 µM, 0.70 µM, and 0.87 µM, respectively. The probe will be applied further in biosensors and other fields.


Assuntos
Técnicas Biossensoriais , Corantes Fluorescentes , Benzoxazóis , Cisteína , Glutationa , Homocisteína
19.
Anal Biochem ; 591: 113539, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31837297

RESUMO

A fluorescent probe that responds at distinct wavelengths upon exposure to cyanide, hypochlorite, and bisulfite was synthesized. As a result, an easy to apply analytical methodology was developed for the detection of these ions. The feasibility of this method was evaluated by theoretical calculations. The probe exhibited excellent solubility in the test solution (H2O: DMF = 99: 1, v: v) with low detection limits for cyanide, hypochlorite and bisulfite (4.5 × 10 -8 M, 4.9 × 10 -7 M and 4.3 × 10 -8 M respectively) showing distinct emission wavelengths for each ion without interference in practical application. Furthermore, the probe had low toxicity and was applied for the imaging experiments of cyanide, hypochlorite and bisulfite in living HeLa and MDCK cells.


Assuntos
Cianetos/análise , Corantes Fluorescentes , Ácido Hipocloroso/análise , Imagem Óptica , Sulfitos/análise , Água/química , Animais , Cães , Células HeLa , Humanos , Limite de Detecção , Células Madin Darby de Rim Canino
20.
RSC Adv ; 9(71): 41431-41437, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-35541628

RESUMO

Near-infrared (NIR) fluorescent probes are widely employed in biological detection because of their lower damage to biological samples, low background interference, and high signal-to-noise ratio. Herein, a highly water-soluble NIR probe (NIRHA) based on a hemicyanine skeleton and bearing an acrylate moiety was synthesized. The probe showed high selectivity toward cysteine (Cys) over homocysteine (Hcy) and glutathione (GSH). The probe also had low cytotoxicity and was successfully applied in HeLa cells and mouse experiments. Results of bioimaging experiments indicated that the probe was effective for visualizing endogenous Cys in vitro and in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...