Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 110(17): 8587-92, 2006 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-16640411

RESUMO

A simple and efficient approach has been set up for fabricating highly active sulfated titania-silica (SO(4)(2-)/TiO(2)-SiO(2)): Ti(SO(4))(2) was hydrolyzed in the presence of silica, making it possible to sulfate titania and form titania-silica mixed oxide in one step. This study was focused on investigating the roles of sulfate species and silica in improving the physicochemical properties and photoactivity of SO(4)(2-)/TiO(2)-SiO(2) through comparison with sulfated titania (SO(4)(2-)/TiO(2)) and sulfate-free catalysts (TiO(2) and TiO(2)-SiO(2)). Various characterization methods, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and surface photovoltage spectroscopy (SPS), were employed to test these materials. The results revealed that for SO(4)(2-)/TiO(2) and TiO(2)-SiO(2) the sole presence of either sulfate species or silica imposes negative effects on the photocatalysis behavior of titania, leading them to have negligible photoactivities. On the contrary, in the case of SO(4)(2-)/TiO(2)-SiO(2), sulfate species and silica were proved to act in a cooperative manner; therefore, the following enhanced structure and surface properties of SO(4)(2-)/TiO(2)-SiO(2) were obtained: (i) relatively well-crystallized and smaller-size (15.4 nm) anatase-phase titania was formed upon 500 degrees C calcination without forming rutile phase and (ii) the formation of active surface sulfate species promotes the separation of photoinduced electron-hole pairs and therefore accelerates the photocatalysis reaction. Therefore, its photoactivity is enhanced as a result of the favorable synergic effects between sulfate species and silica due to their simultaneous presence.

2.
J Phys Chem B ; 109(12): 5554-60, 2005 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16851596

RESUMO

Highly active sulfate-promoted rutile titania (SO(4)(2-)/TiO(2)) with smaller band gap was prepared by an in situ sulfation method, that is, under moderate conditions, sulfate-promoted rutile titania was directly obtained via precipitating Ti(SO(4))(2) in NaOH solution followed by peptizing in HNO(3) without the phase transformation from anatase to rutile. Thus, the negative impacts of phase transformation from anatase to rutile on the structure, surface, and photoactivity properties of the catalysts due to higher calcination temperature can be avoided. The catalysts were characterized by means of thermal analysis, Brunauer-Emmett-Teller analysis (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), UV-visible spectroscopy, FT-IR pyridine adsorption, and temperature-programmed desorption (TPD). The results show sulfate species are sensitive to the variation of calcination temperature. In the process of peptizing, sulfate species are homogeneously dispersed throughout the bulk of catalysts, allowing sulfate species to penetrate into the network of TiO(2) effectively. After being calcined at 300 degrees C, sulfate species occupy oxygen sites to form Ti-S bonds, as evidenced by XPS results. As calcination temperature is further increased to 600 degrees C or above, the active sulfate species on the catalyst surface are destroyed, and the sulfate species in the network of TiO(2) are expelled out onto the surface to form inactive sulfate species. Thus, Ti(3+) defects will be produced on the catalyst surface. Accompanying this process, surface area is decreased promptly, and crystalline size is greatly increased via two fast growth phases due to the decomposition of sulfate species with different binding forces. Most importantly, the band gap of SO(4)(2-)/TiO(2) is remarkably shifted to the visible light region due to the formation of Ti-S bonds, and with increasing calcination temperature the visible light absorption capability is reduced due to breakage of Ti-S bonds. The excellent photoactivity of 300 degrees C calcined SO(4)(2-)/TiO(2) can be explained by its small crystalline size, high surface area, loose and porous microstructure, and the generation of Brønsted acidity on its surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...