Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasonics ; 142: 107359, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38823151

RESUMO

Conventional surface acoustic wave (SAW) atomizers require a direct water supply on the surface, which can be complex and cumbersome. This paper presents a novel SAW atomizer that uses lateral acoustic wetting to achieve atomization without a direct water supply. The device works by simply pressing a piece of wetted paper strip against the bottom of an excited piezoelectric transducer. The liquid then flows along the side to the unmodified surface edge, where it is atomized into a well-converging mist in a stable and sustainable manner. We identified this phenomenon as the edge effect, using numerical simulation results of surface displacement mode. The feasibility of the prototype design was demonstrated by observing and investigating the integrated process of liquid extraction, transport, and atomization. We further explored the hydrodynamic principles of the change and breakup in liquid film geometry under different input powers. Experiments demonstrate that our atomizer is capable of generating high-quality fine liquid particles stably and rapidly even at very high input power. Compared to conventional SAW atomizer, the dispersion of mist width can be scaled down by 70%, while the atomization rate can be increased by 37.5%. Combined with the advantages of easy installation and robustness, the edge effect-based atomizer offers an attractive alternative to current counterparts for applications requiring high efficiency and miniaturization, such as simultaneous synthesis and encapsulation of nanoparticles, pulmonary drug delivery and portable inhalation therapy.

2.
Micromachines (Basel) ; 15(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38258254

RESUMO

Highly sensitive surface acoustic wave (SAW) sensors have recently been recognized as a promising tool for various industrial and medical applications. However, existing SAW sensors generally suffer from a complex design, large size, and poor robustness. In this paper, we develop a simple and stable delay line ultra-high frequency (UHF) SAW sensor for highly sensitive detection of temperature. A Z-shaped delay line is specially designed on the piezoelectric substrate to improve the sensitivity and reduce the substrate size. Herein, the optimum design parameters of extremely short-pitch interdigital transducers (IDTs) are given by numerical simulations. The extremely short pitch gives the SAW sensor ultra-high operating frequency and consequently ultra-high sensitivity. Several experiments are conducted to demonstrate that the sensitivity of the Z-shaped SAW delay line sensor can reach up to 116.685°/°C for temperature detection. The results show that the sensor is an attractive alternative to current SAW sensing platforms in many applications.

3.
Biosens Bioelectron ; 247: 115944, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141441

RESUMO

Shear horizontal surface acoustic wave (SH-SAW) sensors are regarded as a promising alternative for label-free, sensitive, real time and low-cost detection. Nevertheless, achieving high sensitivity with SH-SAW has approached its limit imposed by the mass transport and probe-target affinity. We present here an SH-SAW biosensor accompanied by a unique Rayleigh wave-based actuator. The platform assembled on an ST-quartz substrate consists of dual-channel SH-SAW delay lines fabricated along a 90°-rotated direction, whilst another interdigital electrode (IDT) is orthogonally placed to generate Rayleigh waves so as to induce favourable streaming in the bio-chamber, enhancing the binding efficiency of the bio-target. Theoretical foundation and simulation have shown that Rayleigh acoustic streaming generates a level of agitation that accelerates the mass transport of the biomolecules to the surface. A fourfold improvement in sensitivity is achieved compared with conventional SH-SAW biosensors by means of complementary DNA hybridization with the aid of the Rayleigh wave device, giving a sensitivity level up to 6.15 Hz/(ng/mL) and a limit of detection of 0.617 ng/mL. This suggests that the proposed scheme could improve the sensitivity of SAW biosensors in real-time detection.


Assuntos
Técnicas Biossensoriais , Som , Acústica
4.
Artigo em Inglês | MEDLINE | ID: mdl-35143396

RESUMO

Acoustic wave devices have great potential for integration with lab-on-chip highly efficient microfluidics. This article investigates Lamb wave-based unidirectional transducers for application in acoustic wave-driven microfluidic devices with high efficiency. The simulation of the unidirectional transducer is performed via the finite element analysis. The optimal cell design of the transducer is suggested according to the Lamb wave uneven excitation. In particular, we propose a sophisticated double-side IDT pattern to enhance Lamb wave transduction. The anti-symmetric A0 mode implemented with double-side unidirectional transducers is determined and optimized for the microfluidic device application. The optimum Lamb wave-based devices are fabricated on a wafer of 128° YX LiNbO3 with a thickness of 300 [Formula: see text] using an elaborate two-side lithography technique. The amplitude of Lamb waves excited from the unidirectional transducers are measured and confirmed the unidirectionality, accordingly. Thorough atomization and jetting experiments driven by the unidirectional transducer are presented. The results agree with the simulation and verify the efficiency of the proposed double-side patterned unidirectional transducers in microfluidic applications.


Assuntos
Microfluídica , Transdutores , Animais , Simulação por Computador , Desenho de Equipamento , Ovinos , Som
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...