Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1402996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975245

RESUMO

Huntingtin-associated protein 1 (HAP1) was the first protein discovered to interact with huntingtin. Besides brain, HAP1 is also expressed in the spinal cord, dorsal root ganglion, endocrine, and digestive systems. HAP1 has diverse functions involving in vesicular transport, receptor recycling, gene transcription, and signal transduction. HAP1 is strongly linked to several neurological diseases, including Huntington's disease, Alzheimer's disease, epilepsy, ischemic stroke, and depression. In addition, HAP1 has been proved to participate in cancers and diabetes mellitus. This article provides an overview of HAP1 regarding the tissue distribution, cell localization, functions, and offers fresh perspectives to investigate its role in diseases.

2.
Front Aging Neurosci ; 15: 1190563, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484692

RESUMO

Pain is common and frequent in many neurodegenerative diseases, although it has not received much attention. In Huntington's disease (HD), pain is often ignored and under-researched because attention is more focused on motor and cognitive decline than psychiatric symptoms. In HD progression, pain symptoms are complex and involved in multiple etiologies, particularly mental issues such as apathy, anxiety and irritability. Because of psychiatric issues, HD patients rarely complain of pain, although their bodies show severe pain symptoms, ultimately resulting in insufficient awareness and lack of research. In HD, few studies have focused on pain and pain-related features. A detailed and systemic pain history is crucial to assess and explore pain pathophysiology in HD. This review provides an overview concentrating on pain-related factors in HD, including neuropathology, frequency, features, affecting factors and mechanisms. More attention and studies are still needed in this interesting field in the future.

3.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(1): 34-40, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36631013

RESUMO

Objective To examine the effects of Coxsackie virus B3 (CVB3) on the NLR family, pyrin domain containing protein 3 (NLPR3) of mouse macrophages and its mechanisms. Methods RAW264.7 cells, primary mouse macrophages (bone marrow-derived macrophages or peritoneal macrophages), and short hairpin RNA (shRNA)-NLRP3 lentivirus infected RAW264.7 cells were stimulated by different dosages of CVB3. The transcript levels of NLRP3 and IL-1ß were measured by quantitative real-time PCR. IL-1ß in the supernatants of cell cultures was determined by ELISA. The protein level of NLRP3 was tested by Western blot analysis and the interacting proteins of NLRP3 were detected by co-immunoprecipitation (Co-IP). Results The transcript levels of NLRP3 and IL-1ß were significantly up-regulated in the CVB3 stimulated RAW264.7 cells and primary mouse macrophages (bone marrow-derived macrophages or peritoneal macrophages). The expression level of NLRP3 presented CVB3-dose dependence and demonstrated the highest expression level at 6 hours after CVB3 treatment. The transcript level of IL-1ß significantly increased the most at 6 hours after CVB3 treatment, while the protein level of IL-1ß peaked at 24 hours after CVB3 treatment. In the GFP-shRNA-NLRP3 lentivirus infected RAW264.7 cells, NLRP3 was obviously inhibited, and with CVB3 stimulation, IL-1ß in the supernatants of cell cultures decreased significantly. Moreover, NLRP3 antibody was used for Co-IP experiment, in which the resultant protein complex was then stained with silver nitrate. The differential protein band between different groups was identified as nicotinamide adenine dinucleotide kinase 2 (NADK2) by mass spectrometry. This result demonstrated that CVB3 induced the interaction between NADK2 and NLRP3. Conclusion CVB3 stimulation promotes the activation of NLRP3 in macrophages, thereby enhancing the expression and secretion of pro-inflammatory cytokine IL-1ß by activating NADK2.


Assuntos
Enterovirus , Macrófagos , NAD , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Camundongos , Enterovirus/metabolismo , Infecções por Enterovirus/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , NAD/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA Interferente Pequeno/metabolismo
4.
Pain ; 164(6): e286-e302, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508175

RESUMO

ABSTRACT: Although pain dysfunction is increasingly observed in Huntington disease, the underlying mechanisms still unknown. As a crucial Huntington-associated protein, Huntington-associated protein 1 (HAP1) is enriched in normal spinal dorsal horn and dorsal root ganglia (DRG) which are regarded as "primary sensory center," indicating its potential functions in pain process. Here, we discovered that HAP1 level was greatly increased in the dorsal horn and DRG under acute and chronic pain conditions. Lack of HAP1 obviously suppressed mechanical allodynia and hyperalgesia in spared nerve injury (SNI)-induced and chronic constriction injury-induced pain. Its deficiency also greatly inhibited the excitability of nociceptive neurons. Interestingly, we found that suppressing HAP1 level diminished the membrane expression of the L-type calcium channel (Cav1.2), which can regulate Ca 2+ influx and then influence brain-derived neurotrophic factor (BDNF) synthesis and release. Furthermore, SNI-induced activation of astrocytes and microglia notably decreased in HAP1-deficient mice. These results indicate that HAP1 deficiency might attenuate pain responses. Collectively, our results suggest that HAP1 in dorsal horn and DRG neurons regulates Cav1.2 surface expression, which in turn reduces neuronal excitability, BDNF secretion, and inflammatory responses and ultimately influences neuropathic pain progression.


Assuntos
Neuralgia , Animais , Camundongos , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia , Neuralgia/metabolismo , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/metabolismo
5.
Neural Regen Res ; 18(2): 396-403, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35900436

RESUMO

After spinal cord injury (SCI), a fibroblast- and microglia-mediated fibrotic scar is formed in the lesion core, and a glial scar is formed around the fibrotic scar as a result of the activation and proliferation of astrocytes. Simultaneously, a large number of neurons are lost in the injured area. Regulating the dense glial scar and replenishing neurons in the injured area are essential for SCI repair. Polypyrimidine tract binding protein (PTB), known as an RNA-binding protein, plays a key role in neurogenesis. Here, we utilized short hairpin RNAs (shRNAs) and antisense oligonucleotides (ASOs) to knock down PTB expression. We found that reactive spinal astrocytes from mice were directly reprogrammed into motoneuron-like cells by PTB downregulation in vitro. In a mouse model of compression-induced SCI, adeno-associated viral shRNA-mediated PTB knockdown replenished motoneuron-like cells around the injured area. Basso Mouse Scale scores and forced swim, inclined plate, cold allodynia, and hot plate tests showed that PTB knockdown promoted motor function recovery in mice but did not improve sensory perception after SCI. Furthermore, ASO-mediated PTB knockdown improved motor function restoration by not only replenishing motoneuron-like cells around the injured area but also by modestly reducing the density of the glial scar without disrupting its overall structure. Together, these findings suggest that PTB knockdown may be a promising therapeutic strategy to promote motor function recovery during spinal cord repair.

6.
Front Cell Neurosci ; 16: 1005399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467604

RESUMO

Spinal cord injury (SCI) is a serious neurological trauma that is challenging to treat. After SCI, many neurons in the injured area die due to necrosis or apoptosis, and astrocytes, oligodendrocytes, microglia and other non-neuronal cells become dysfunctional, hindering the repair of the injured spinal cord. Corrective surgery and biological, physical and pharmacological therapies are commonly used treatment modalities for SCI; however, no current therapeutic strategies can achieve complete recovery. Somatic cell reprogramming is a promising technology that has gradually become a feasible therapeutic approach for repairing the injured spinal cord. This revolutionary technology can reprogram fibroblasts, astrocytes, NG2 cells and neural progenitor cells into neurons or oligodendrocytes for spinal cord repair. In this review, we provide an overview of the transcription factors, genes, microRNAs (miRNAs), small molecules and combinations of these factors that can mediate somatic cell reprogramming to repair the injured spinal cord. Although many challenges and questions related to this technique remain, we believe that the beneficial effect of somatic cell reprogramming provides new ideas for achieving functional recovery after SCI and a direction for the development of treatments for SCI.

7.
Tumori ; 108(1): 63-76, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34165025

RESUMO

BACKGROUND: Hypoxia is a hallmark of solid cancers, including hepatocellular carcinoma (HCC). There is scarce information about how hypoxia avoids immunologic stress and maintains a cancer-promoting microenvironment. METHODS: The Cancer Genome Atlas, RNA-seq data, and Oncomine database were used to discover the correlation of RNASEH2A with tumor progression; then expression of RNASEH2A mRNA and protein were detected in HCC tissues and cells subjected to hypoxia or with the treatment of CoCl2 via real-time quantitative polymerase chain reaction and immunochemistry assays. Finally, the effect of RNASEH2A on cell proliferation and the involved signaling pathway was explored further. RESULTS: RNASEH2A was positively correlated with tumor grade, size, vascular invasion, and poor prognosis. The expression of RNASEH2A mRNA and protein were increased and dependent on hypoxia-inducible factor 2α in HCC tissues and cell lines. Knockout of RNASEH2A in HCC cells greatly reduced cell proliferation and induced the transcription of multiple cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) targeted type 1 interferon-related genes, including IFIT1, USP18, and CXCL10, which suggests knockout of RNASEH2A may produce immunologic stress and tumor suppressive effects. CONCLUSIONS: RNASEH2A plays a critical role and potentially predicts patient outcomes in HCC, which uncovers a new mechanism that RNASEH2A contributes to limit immunologic stress of cancer cells in the context of hypoxia.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas de Membrana/genética , Nucleotidiltransferases/genética , Ribonuclease H/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Quimiocina CXCL10/genética , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Técnicas de Inativação de Genes , Células Hep G2 , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Masculino , Prognóstico , Proteínas de Ligação a RNA/genética , Transdução de Sinais/genética , Hipóxia Tumoral/genética , Microambiente Tumoral/imunologia , Ubiquitina Tiolesterase/genética
8.
Neural Regen Res ; 17(2): 362-369, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34269211

RESUMO

The rapid formation of a glial/fibrotic scar is one of the main factors hampering axon growth after spinal cord injury. The bidirectional EphB2/ephrin-B2 signaling of the fibroblast-astrocyte contact-dependent interaction is a trigger for glial/fibrotic scar formation. In the present study, a new in vitro model was produced by coculture of fibroblasts and astrocytes wounded by scratching to mimic glial/fibrotic scar-like structures using an improved slide system. After treatment with RNAi to downregulate EphB2, changes in glial/fibrotic scar formation and the growth of VSC4.1 motoneuron axons were examined. Following RNAi treatment, fibroblasts and astrocytes dispersed without forming a glial/fibrotic scar-like structure. Furthermore, the expression levels of neurocan, NG2 and collagen I in the coculture were reduced, and the growth of VSC4.1 motoneuron axons was enhanced. These findings suggest that suppression of EphB2 expression by RNAi attenuates the formation of a glial/fibrotic scar and promotes axon growth. This study was approved by the Laboratory Animal Ethics Committee of Jiangsu Province, China (approval No. 2019-0506-002) on May 6, 2019.

9.
Balkan Med J ; 39(1): 39-47, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34928232

RESUMO

Background: Nck1 is an important molecule that participates in many cellular processes, including neurite outgrowth, synaptic plasticity, and apoptosis. However, the expression and function of Nck1 in the spinal cord and spinal cord injury remain unknown. Aims: To investigate the role of Nck1 in spinal cord injury. Study Design: Animal experimentation. Methods: Adult Sprague­Dawley rats were used to establish an acute spinal cord injury model. Double immunofluorescence staining, Western blot, and quantitative reverse transcription polymerase chain reaction analysis were used to investigate the distribution, cellular localization, and expression of Nck1 in spinal cord injury processes. Short interfering RNA was used to silence Nck1 expression in VSC4.1 cells. The Shapiro­Wilk test was used for the normality distribution analysis; the Student's unpaired t-test, 1-way analysis of variance followed by post hoc Tukey's test were used for data analysis. Finally, RNA sequencing technology and gene ontology analysis were used to analyze the changes in Nck1-associated genes expression after spinal cord injury. Results: Colabeled staining demonstrated that Nck1 was especially distributed in neurons. Western blot, quantitative reverse transcription polymerase chain reaction, and statistical analysis revealed that Nck1 expression reduced to the lowest levels at 1 day after nerve injury, and slowly increased to a stable level in 21 days (P < .05). Nck1-specific short interfering RNA transfection significantly reduced cell viability and neurite development in neurons. Bioinformatic analysis indicated that Nck1 participates in multiple pathological processes of spinal cord injury, and many Nck1-associated genes exhibited differential expression levels. Conclusion: Nck1 is a vital protein in spinal cord injury processes and, therefore, further studies should be conducted to explore its potential functions and molecular mechanisms in spinal cord injury repair.


Assuntos
Traumatismos da Medula Espinal , Animais , Regulação para Baixo , Humanos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
10.
CNS Neurosci Ther ; 27(6): 714-724, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33794069

RESUMO

AIMS: At the beginning of spinal cord injury (SCI), the expression of EphB2 on fibroblasts and ephrin-B2 on astrocytes increased simultaneously and their binding triggers the formation of astroglial-fibrotic scars, which represent a barrier to axonal regeneration. In the present study, we sought to suppress scar formation and to promote recovery from SCI by targeting EphB2 in vivo. METHODS: The female rats SCI models were used in vivo experiments by subsequently injecting with EphB2 shRNA lentiviruses. The effect on EphB2 knockdown was evaluated at 14 days after injury. The repair outcomes were evaluated at 3 months by electrophysiological and morphological assessments to regenerated nerve tissue. The EphB2 expression and TGF-ß1 secretion were detected in vitro using a lipopolysaccharides (LPS)-induced astrocyte injury model. RESULTS: RNAi decreased the expression of EphB2 after SCI, which effectively inhibited fibroblasts and astrocytes from aggregating at 14 days. The expression of EphB2 in activated astrocytes, in addition to fibroblasts, was significantly increased after SCI in vivo, in line with upregulated expression of EphB2 and increased secretion of TGF-ß1 in astrocyte culture treated with LPS. Compared to the scramble control, RNAi targeting with EphB2 could promote more nerve regeneration and better myelination. CONCLUSIONS: EphB2 knockdown may effectively inhibit the formation of astroglial-fibrotic scars at the beginning of SCI. It is beneficial to eliminate the barrier of nerve regeneration.


Assuntos
Astrócitos/patologia , Cicatriz/patologia , Regeneração Nervosa/genética , Receptor EphB2/genética , Traumatismos da Medula Espinal/terapia , Animais , Fenômenos Eletrofisiológicos , Feminino , Técnicas de Silenciamento de Genes , Lipopolissacarídeos , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Fator de Crescimento Transformador beta1 , Resultado do Tratamento
11.
Neural Regen Res ; 14(9): 1583-1593, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31089057

RESUMO

In the search for a therapeutic schedule for spinal cord injury, it is necessary to understand key genes and their corresponding regulatory networks involved in the spinal cord injury process. However, ad hoc selection and analysis of one or two genes cannot fully reveal the complex molecular biological mechanisms of spinal cord injury. The emergence of second-generation sequencing technology (RNA sequencing) has provided a better method. In this study, RNA sequencing technology was used to analyze differentially expressed genes at different time points after spinal cord injury in rat models established by contusion of the eighth thoracic segment. The numbers of genes that changed significantly were 944, 1362 and 1421 at 1, 4 and 7 days after spinal cord injury respectively. After gene ontology analysis and temporal expression analysis of the differentially expressed genes, C5ar1, Socs3 and CCL6 genes were then selected and identified by real-time polymerase chain reaction and western blot assay. The mRNA expression trends of C5ar1, Socs3 and CCL6 genes were consistent with the RNA sequencing results. Further verification and analysis of C5ar1 indicate that the level of protein expression of C5ar1 was consistent with its nucleic acid level after spinal cord injury. C5ar1 was mainly expressed in neurons and astrocytes. Finally, the gene Itgb2, which may be related to C5ar1, was found by Chilibot database and literature search. Immunofluorescence histochemical results showed that the expression of Itgb2 was highly consistent with that of C5ar1. Itgb2 was expressed in astrocytes. RNA sequencing technology can screen differentially expressed genes at different time points after spinal cord injury. Through analysis and verification, genes strongly associated with spinal cord injury can be screened. This can provide experimental data for further determining the molecular mechanism of spinal cord injury, and also provide possible targets for the treatment of spinal cord injury. This study was approved ethically by the Laboratory Animal Ethics Committee of Jiangsu Province, China (approval No. 2018-0306-001) on March 6, 2018.

12.
Aging (Albany NY) ; 11(8): 2430-2446, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31039132

RESUMO

Human papillomavirus (HPV) positive head and neck cancer displayed specific transcription landscape but the underlying molecular mechanisms are not fully determined. Here, we interestingly found that HPV infection could globally elongate the 3'-untranslated regions (3'UTRs) in the majority of alternative polyadenylation (APA)-containing genes. Counterintuitively, the 3'UTR elongation does not affect their resident gene expression. Rather, they significantly increase the number of binding sites for RNA-binding proteins (RBPs) and subsequently upregulate a group of oncogenic genes by absorbing RBPs. A significant fraction of HPV affected genes are regulated through such mechanism that is 3'UTR-mediated recruitment of RBPs. As an example, we observed that HPV infection increases the length of 3'UTR of RBM25 transcript and hence recruits much more RNA binding protein including FUS and DGCR8. Consequently, in the absence of FUS and DGCR8 regulation, PD-1 was rescued and up-regulated after HPV infection. Taken together, our findings not only suggest a novel paradigm of how oncogenic viruses shape tumor transcriptome by modifying the 3'UTR, but also present a previously unrecognized layer of APA-RBP interplay in this molecular hierarchy. Modification of the pool of RBP-binding motif might expand our understandings into virus-associated carcinogenesis.


Assuntos
Regiões 3' não Traduzidas , Neoplasias de Cabeça e Pescoço/virologia , MicroRNAs , Infecções por Papillomavirus/virologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Transcriptoma , Bases de Dados Genéticas , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Papillomaviridae , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Regulação para Cima
13.
Cell Biochem Funct ; 37(3): 153-160, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30907011

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma, and up to 30% DLBCL patients eventually died by using first-line chemotherapy regimens. Currently, Bruton tyrosine kinase (BTK) inhibitor (ibrutinib) is one of the most promising medicine in clinical trials for DLBCL, to which about 25% of patients with relapsed or refractory DLBCL are responsive. Thus, it is urgent to discover new druggable targets for DLBCL, especially for patients who are unresponsive to first-line chemotherapy and ibrutinib. Here, we found that MAP 3K7 (TAK1) is required for DLBCL survival. Inhibition of TAK1 by small molecule 5Z7 or genetic silence could massively induce deaths of DLBCL cells. Mechanistically, TAK1 inhibition could dramatically reduce the nuclear factor kappa B (NF-κB) activity. Notably, ibrutinib-resistant DLBCL cells also respond to TAK1 inhibition. Database analysis showed that high expression of TAK1 in patients with DLBCL shows poor survival. A subtype of DLBCL patients showed that high expression of both TAK1 and BTK1 is poorly responsive to the current chemotherapy. Moreover, DLBCL cell line with high expression of both TAK1 and BTK1 is resistant to Dox. Simultaneously targeting TAK1 and BTK not only increases cellular toxicity of individual drug but also enhances the sensitivity to Dox. Taken together, we provide convincing evidence to show that kinase TAK1 is a druggable target in DLBCL. SIGNIFICANCE OF THE STUDY: Currently, there is still a significant portion of patients with DLBCL who are unresponsive to first-line chemotherapy. Thus, identification of novel druggable targets such as kinase is critical important. Here, we found that TAK1 inhibition promotes death of DLBCL cells through inhibition of chronic NF-κB signalling. Importantly, TAK1 inhibition overcomes ibrutinib resistance in DLBCL cells. Finally, DLBCL patients with high expression of both TAK1 and BTK showed extremely poor survival. In summary, we provide convincing results to demonstrate a potential important druggable kinase in DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/enzimologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Terapia de Alvo Molecular , Adenina/análogos & derivados , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Linfoma Difuso de Grandes Células B/patologia , Piperidinas , Pirazóis/farmacologia , Pirimidinas/farmacologia , Relação Estrutura-Atividade
14.
Gene ; 669: 35-41, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29777912

RESUMO

Regnase-1 is not only a key component in maintaining intracellular homeostasis but also a critical negative regulator in preventing autoimmune diseases and cancer development. To keep homeostatic state, Regnase-1 has to be maintained at a desired level in multiple cell types. However, the molecular mechanism of keeping a certain transcriptional level of Reganase-1 is largely unknown. In this study, we found a super-enhancer (Reg-1-SE) around Regnase-1 gene is able to control the homeostatic expression of Regnase-1. Functional inhibition of super-enhancers through BRD4 inhibitors or genetic silence of key components such as BRD4 and MED1 significantly downregulates Regnase-1 expression at multiple cell types. Consistently, treatment of JQ1 or I-BET-762 dramatically decreases the protein level of Regnase-1. By analyzing Regnase-1 gene, the distribution of H3K27Ac is highly enriched at a 8 kb DNA region around the second intron. Several DNA elements at the second intron are highly conserved between different species. Deletion of the second intron by CRISPR-Cas9 technology significantly reduces the expression of Regnase-1. JQ1 or I-BET-762 failed to further downregulate the expression of Regnase-1 in cells without the second intron. Our result reveals a novel molecular mechanism by which a super-enhancer around the second intron regulates the expression of Regnase-1, and in turn maintains a desired level of Regnase-1.


Assuntos
Elementos Facilitadores Genéticos , Ribonucleases/genética , Fatores de Transcrição/genética , Animais , Azepinas/farmacologia , Benzodiazepinas/farmacologia , Linhagem Celular , Regulação para Baixo , Células HEK293 , Homeostase , Humanos , Íntrons , Camundongos , Células NIH 3T3 , Ribonucleases/metabolismo , Deleção de Sequência , Fatores de Transcrição/metabolismo , Triazóis/farmacologia
15.
Cell Mol Immunol ; 14(5): 412-422, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28194024

RESUMO

RNA-binding proteins (RBPs) are central players in post-transcriptional regulation and immune homeostasis. The ribonuclease and RBP Regnase-1 exerts critical roles in both immune cells and non-immune cells. Its expression is rapidly induced under diverse conditions including microbial infections, treatment with inflammatory cytokines and chemical or mechanical stimulation. Regnase-1 activation is transient and is subject to negative feedback mechanisms including proteasome-mediated degradation or mucosa-associated lymphoid tissue 1 (MALT1) mediated cleavage. The major function of Regnase-1 is promoting mRNA decay via its ribonuclease activity by specifically targeting a subset of genes in different cell types. In monocytes, Regnase-1 downregulates IL-6 and IL-12B mRNAs, thus mitigating inflammation, whereas in T cells, it restricts T-cell activation by targeting c-Rel, Ox40 and Il-2 transcripts. In cancer cells, Regnase-1 promotes apoptosis by inhibiting anti-apoptotic genes including Bcl2L1, Bcl2A1, RelB and Bcl3. Together with up-frameshift protein-1 (UPF1), Regnase-1 specifically cleaves mRNAs that are active during translation by recognizing a stem-loop (SL) structure within the 3'UTRs of these genes in endoplasmic reticulum-bound ribosomes. Through this mechanism, Regnase-1 rapidly shapes mRNA profiles and associated protein expression, restricts inflammation and maintains immune homeostasis. Dysregulation of Regnase-1 has been described in a multitude of pathological states including autoimmune diseases, cancer and cardiovascular diseases. Here, we provide a comprehensive update on the function, regulation and molecular mechanisms of Regnase-1, and we propose that Regnase-1 may function as a master rapid response gene for cellular adaption triggered by microenvironmental changes.


Assuntos
Doenças Autoimunes/fisiopatologia , Inflamação/fisiopatologia , Ribonucleases/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Estresse Fisiológico
16.
Neurobiol Aging ; 36(1): 188-200, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25219467

RESUMO

Glycogen synthase kinase-3ß (GSK-3ß) and protein phosphatase 2A (PP2A) are the important enzymes controlling tau hyperphosphorylation. The relationship between these two enzymes and its impact on tau hyperphosphorylation are not well understood. In the present study, we determined the cross talk between PI3K-AKT-GSK-3ß and PP2A pathways and found that the former regulated the methylation of PP2Ac via GSK-3ß. Upregulation of GSK-3ß led to an increase in the methylation and activity of PP2Ac through suppression of protein phosphatase methylesterase-1 expression and phosphorylation of leucine carboxyl methyltransferase 1. PP2A also regulated GSK-3ß phosphorylation. Downregulation of PP2A enhanced Ser9 phosphorylation of GSK-3ß and inhibited its kinase activity. Thus, GSK-3ß and PP2A regulate each other and control tau phosphorylation both directly and indirectly through each other. Reduction of tau phosphorylation by inhibition of GSK-3ß may be more than offset by inhibition of PP2A through a shift in phosphatase methylesterase-1/leucine carboxyl methyltransferase 1 balance; PP2A regulates phosphorylation of tau at Ser262/356, a required site for tau pathology. These findings suggest targeting PP2A rather than GSK-3ß to inhibit tau pathology.


Assuntos
Quinase 3 da Glicogênio Sintase/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteína Fosfatase 2/fisiologia , Transdução de Sinais/fisiologia , Proteínas tau/metabolismo , Animais , Encéfalo/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Células HeLa , Humanos , Metilação , Camundongos Endogâmicos C57BL , Fosforilação/genética , Proteína O-Metiltransferase/metabolismo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...