Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Immunol ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822076
2.
Sci Rep ; 14(1): 4841, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418855

RESUMO

We used the Exploris 240 mass spectrometer for non-targeted metabolomics on Saccharomyces cerevisiae strain BY4741 and tested AcquireX software for increasing the number of detectable compounds and Compound Discoverer 3.3 software for identifying compounds by MS2 spectral library matching. AcquireX increased the number of potentially identifiable compounds by 50% through six iterations of MS2 acquisition. On the basis of high-scoring MS2 matches made by Compound Discoverer, there were 483 compounds putatively identified from nearly 8000 candidate spectra. Comparisons to 20 amino acid standards, however, revealed instances whereby compound matches could be incorrect despite strong scores. Situations included the candidate with the top score not being the correct compound, matching the same compound at two different chromatographic peaks, assigning the highest score to a library compound much heavier than the mass for the parent ion, and grouping MS2 isomers to a single parent ion. Because the software does not calculate false positive and false discovery rates at these multiple levels where such errors can propagate, we conclude that manual examination of findings will be required post software analysis. These results will interest scientists who may use this platform for metabolomics research in diverse disciplines including medical science, environmental science, and agriculture.


Assuntos
Metabolômica , Software , Metabolômica/métodos , Espectrometria de Massas/métodos , Padrões de Referência
3.
Phytopathology ; 114(6): 1196-1205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38281161

RESUMO

When Pseudomonas savastanoi pv. phaseolicola, the bacterium that causes halo blight, induces hypersensitive immunity in common bean leaves, salicylic acid and phytoalexins accumulate at the site of infection. Both salicylic acid and the phytoalexin resveratrol exert antibiotic activities and toxicities in vitro, adversely disrupting the P. savastanoi pv. phaseolicola proteome and metabolism and stalling replication and motility. These efficacious properties likely contribute to the cessation of bacterial spread in beans. Genistein is an isoflavonoid phytoalexin that also accumulates during bean immunity, so we tested its antibiotic potential in vitro. Quantitative proteomics revealed that genistein did not induce proteomic changes in P. savastanoi pv. phaseolicola in the same way that salicylic acid or resveratrol did. Rather, a dioxygenase that could function to metabolize genistein was among the most highly induced enzymes. Indeed, high-throughput metabolomics provided direct evidence for genistein catabolism. Metabolomics also revealed that genistein induced the bacterium to produce indole compounds, several of which had structural similarity to auxin. Additional mass spectrometry analyses proved that the bacterium produced an isomer of the auxin indole-3-acetic acid but not indole-3-acetic acid proper. These results reveal that P. savastanoi pv. phaseolicola can tolerate bean genistein and that the bacterium likely responds to bean-produced genistein during infection, using it as a signal to increase pathogenicity, possibly by altering host cell physiology or metabolism through the production of potential auxin mimics.


Assuntos
Genisteína , Fitoalexinas , Doenças das Plantas , Pseudomonas , Sesquiterpenos , Genisteína/farmacologia , Genisteína/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Pseudomonas/efeitos dos fármacos , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacologia , Indóis/metabolismo , Indóis/farmacologia , Ácido Salicílico/metabolismo , Folhas de Planta/microbiologia , Phaseolus/microbiologia , Proteômica , Ácidos Indolacéticos/metabolismo , Estilbenos/metabolismo , Estilbenos/farmacologia , Resveratrol/farmacologia , Resveratrol/metabolismo
4.
Front Public Health ; 11: 1253844, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098818

RESUMO

Introduction: The Chinese state has recently implemented the COVID-19 Vaccine Communication Campaign (CVCC) to counter vaccine hesitancy. Nonetheless, the extant literature that examines COVID-19 vaccine acceptance has less represented COVID-19 vaccine communication efforts. Methods: To address this lacuna, we qualitatively explored how CVCCs were organized in Chinese communities by investigating 54 Chinese stakeholders. Results: This study indicates that the CVCC was sustained by top-down political pressure. CVCCs' components involve ideological education among politically affiliated health workers, expanding health worker networks, training health workers, implementing media promotion, communicating with residents using persuasive and explanatory techniques, encouraging multistakeholder partnerships, and using public opinion-steered and coercive approaches. While CVCCs significantly enhanced COVID-19 vaccine acceptance, lacking open communication, stigmatizing vaccine refusers, insufficient stakeholder collaboration, and low trust in the COVID-19 vaccination program (CVP) eroded the validity of CVCCs. Discussion: To promote the continuity of CVCCs in China, CVCC performers are expected to conduct open and inclusive communication with residents. Furthermore, CVP planers should create robust partnerships among health workers by ensuring their agreements on strategies for implementing CVCCs and optimize COVID-19 immunization service provision to depoliticize CVPs. Our study will not only deepen global audiences' understanding of CVCCs in authoritarian China but also offer potential neighborhood-level solutions for implementing local and global public health communication efforts.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Comunicação , Pesquisa Qualitativa , China
6.
Sci Adv ; 9(23): eade1155, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294756

RESUMO

The EGFR-RAS-ERK pathway plays a key role in cancer development and progression. However, the integral assembly of EGFR-RAS-ERK signaling complexes from the upstream component EGFR to the downstream component ERK is largely unknown. Here, we show that hematopoietic PBX-interacting protein (HPIP) interacts with all classical components of the EGFR-RAS-ERK pathway and forms at least two complexes with overlapping components. Experiments of HPIP knockout or knockdown and chemical inhibition of HPIP expression showed that HPIP is required for EGFR-RAS-ERK signaling complex formation, EGFR-RAS-ERK signaling activation, and EGFR-RAS-ERK signaling-mediated promotion of aerobic glycolysis as well as cancer cell growth in vitro and in vivo. HPIP expression is correlated with EGFR-RAS-ERK signaling activation and predicts worse clinical outcomes in patients with lung cancer. These results provide insights into EGFR-RAS-ERK signaling complex formation and EGFR-RAS-ERK signaling regulation and suggest that HPIP may be a promising therapeutic target for cancer with dysregulated EGFR-RAS-ERK signaling.


Assuntos
Sistema de Sinalização das MAP Quinases , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Transformação Celular Neoplásica/genética , Receptores ErbB/genética
7.
Nat Cell Biol ; 25(6): 836-847, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37291265

RESUMO

De novo pyrimidine biosynthesis is achieved by cytosolic carbamoyl-phosphate synthetase II, aspartate transcarbamylase and dihydroorotase (CAD) and uridine 5'-monophosphate synthase (UMPS), and mitochondrial dihydroorotate dehydrogenase (DHODH). However, how these enzymes are orchestrated remains enigmatical. Here we show that cytosolic glutamate oxaloacetate transaminase 1 clusters with CAD and UMPS, and this complex then connects with DHODH, which is mediated by the mitochondrial outer membrane protein voltage-dependent anion-selective channel protein 3. Therefore, these proteins form a multi-enzyme complex, named 'pyrimidinosome', involving AMP-activated protein kinase (AMPK) as a regulator. Activated AMPK dissociates from the complex to enhance pyrimidinosome assembly but inactivated UMPS, which promotes DHODH-mediated ferroptosis defence. Meanwhile, cancer cells with lower expression of AMPK are more reliant on pyrimidinosome-mediated UMP biosynthesis and more vulnerable to its inhibition. Our findings reveal the role of pyrimidinosome in regulating pyrimidine flux and ferroptosis, and suggest a pharmaceutical strategy of targeting pyrimidinosome in cancer treatment.


Assuntos
Ferroptose , Neoplasias , Di-Hidro-Orotato Desidrogenase , Proteínas Quinases Ativadas por AMP , Pirimidinas/farmacologia , Proliferação de Células
8.
J Exp Med ; 220(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36520461

RESUMO

Fatty acid uptake is essential for cell physiological function, but detailed mechanisms remain unclear. Here, we generated an acetyl-CoA carboxylases (ACC1/2) double-knockout cell line, which lacked fatty acid biosynthesis and survived on serum fatty acids and was used to screen for fatty acid uptake inhibitors. We identified a Food and Drug Administration-approved tricyclic antidepressant, nortriptyline, that potently blocked fatty acid uptake both in vitro and in vivo. We also characterized underlying mechanisms whereby nortriptyline provoked lysosomes to release protons and induce cell acidification to suppress macropinocytosis, which accounted for fatty acid endocytosis. Furthermore, nortriptyline alone or in combination with ND-646, a selective ACC1/2 inhibitor, significantly repressed tumor growth, lipogenesis, and hepatic steatosis in mice. Therefore, we show that cells actively take up fatty acids through macropinocytosis, and we provide a potential strategy suppressing tumor growth, lipogenesis, and hepatic steatosis through controlling the cellular level of fatty acids.


Assuntos
Fígado Gorduroso , Doenças Metabólicas , Neoplasias , Camundongos , Animais , Ácidos Graxos/metabolismo , Antidepressivos Tricíclicos/farmacologia , Antidepressivos Tricíclicos/uso terapêutico , Antidepressivos Tricíclicos/metabolismo , Nortriptilina/metabolismo , Nortriptilina/uso terapêutico , Reposicionamento de Medicamentos , Fígado Gorduroso/patologia , Doenças Metabólicas/metabolismo , Neoplasias/patologia , Fígado/metabolismo
9.
EMBO J ; 42(2): e111268, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36408830

RESUMO

Reprogramming of lipid metabolism is emerging as a hallmark of cancer, yet involvement of specific fatty acids (FA) species and related enzymes in tumorigenesis remains unclear. While previous studies have focused on involvement of long-chain fatty acids (LCFAs) including palmitate in cancer, little attention has been paid to the role of very long-chain fatty acids (VLCFAs). Here, we show that depletion of acetyl-CoA carboxylase (ACC1), a critical enzyme involved in the biosynthesis of fatty acids, inhibits both de novo synthesis and elongation of VLCFAs in human cancer cells. ACC1 depletion markedly reduces cellular VLCFA but only marginally influences LCFA levels, including palmitate that can be nutritionally available. Therefore, tumor growth is specifically susceptible to regulation of VLCFAs. We further demonstrate that VLCFA deficiency results in a significant decrease in ceramides as well as downstream glucosylceramides and sphingomyelins, which impairs mitochondrial morphology and renders cancer cells sensitive to oxidative stress and cell death. Taken together, our study highlights that VLCFAs are selectively required for cancer cell survival and reveals a potential strategy to suppress tumor growth.


Assuntos
Neoplasias , Estearatos , Humanos , Estearatos/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Palmitatos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
10.
Risk Manag Healthc Policy ; 16: 2915-2929, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164293

RESUMO

Background: COVID-19 vaccine promotion helps counter vaccine hesitancy and raise vaccine acceptance. Therefore, the Chinese state created collaborative infrastructures of COVID-19 vaccine promotion programs to promote stakeholder engagement and unload the burden of policy practitioners. However, partnerships in COVID-19 vaccine promotion programs have been underrepresented. Methods: To address this lacuna, we qualitatively explored how partnerships in the COVID-19 vaccine promotion campaign (CVPC) were organized in China's neighborhoods. Specifically, we recruited participants via personal networks, referrals from acquaintances, and snowballing approaches, and conducted the qualitative thematic analysis following interviews with 62 Chinese stakeholders. Results: This study indicates that to promote partnerships in CVPCs, neighborhood managers formed leadership in CVPCs, expanded the collaborative network, trained Health Promotion Practitioners (HPPs), and coordinated with HPPs to shape partnership agreements, produced COVID-19 vaccine promotional materials and advertised COVID-19 vaccines via diverse media tools. Although coproduction of CVPCs to a certain extent promoted state-society interaction in neighborhoods and state responsiveness to public demands, partners' disagreements on strategies applied by states for promoting COVID-19 vaccines eroded partnerships in CVPCs. Conclusion: To construct a robust partnership in CVPCs, depoliticizing CVPCs and creating shared values among stakeholders in CVPCs are expected. Our study will not only deepen global audiences' understanding of CVCPs in China but also offer potential neighborhood-level solutions for implementing local and global health promotion efforts.

11.
Cells ; 11(24)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36552752

RESUMO

The roles of lamin A/C in adipocyte differentiation and skeletal muscle lipid metabolism are associated with familial partial lipodystrophy of Dunnigan (FPLD). We confirmed that LMNA knockdown (KD) in mouse adipose-derived mesenchymal stem cells (AD-MSCs) prevented adipocyte maturation. Importantly, in in vitro experiments, we discovered a significant increase in phosphorylated lamin A/C levels at serine 22 or 392 sites (pLamin A/C-S22/392) accompanying increased lipid synthesis in a liver cell line (7701 cells) and two hepatocellular carcinoma (HCC) cell lines (HepG2 and MHCC97-H cells). Moreover, HCC cells did not survive after LMNA knockout (KO) or even KD. Evidently, the functions of lamin A/C differ between the liver and adipose tissue. To date, the mechanism of hepatocyte lipid metabolism mediated by nuclear lamin A/C remains unclear. Our in-depth study aimed to identify the molecular connection between lamin A/C and pLamin A/C, hepatic lipid metabolism and liver cancer. Gain- and loss-of-function experiments were performed to investigate functional changes and the related molecular pathways in 7701 cells. Adenosine 5' monophosphate-activated protein kinase α (AMPKα) was activated when abnormalities in functional lamin A/C were observed following lamin A/C depletion or farnesyltransferase inhibitor (FTI) treatment. Active AMPKα directly phosphorylated acetyl-CoA-carboxylase 1 (ACC1) and subsequently inhibited lipid synthesis but induced glycolysis in both HCC cells and normal cells. According to the mass spectrometry analysis, lamin A/C potentially regulated AMPKα activation through its chaperone proteins, ATPase or ADP/ATP transporter 2. Lonafarnib (an FTI) combined with low-glucose conditions significantly decreased the proliferation of the two HCC cell lines more efficiently than lonafarnib alone by inhibiting glycolysis or the maturation of prelamin A.


Assuntos
Proteínas Quinases Ativadas por AMP , Carcinoma Hepatocelular , Lamina Tipo A , Neoplasias Hepáticas , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Homeostase , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipídeos/fisiologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo
12.
Nat Commun ; 13(1): 7031, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396642

RESUMO

An enhanced NADH/NAD+ ratio, termed reductive stress, is associated with many diseases. However, whether a downstream sensing pathway exists to mediate pathogenic outcomes remains unclear. Here, we generate a soluble pyridine nucleotide transhydrogenase from Escherichia coli (EcSTH), which can elevate the NADH/NAD+ ratio and meantime reduce the NADPH/NADP+ ratio. Additionally, we fuse EcSTH with previously described LbNOX (a water-forming NADH oxidase from Lactobacillus brevis) to resume the NADH/NAD+ ratio. With these tools and by using genome-wide CRISPR/Cas9 library screens and metabolic profiling in mammalian cells, we find that accumulated NADH deregulates PRPS2 (Ribose-phosphate pyrophosphokinase 2)-mediated downstream purine biosynthesis to provoke massive energy consumption, and therefore, the induction of energy stress. Blocking purine biosynthesis prevents NADH accumulation-associated cell death in vitro and tissue injury in vivo. These results underscore the pathophysiological role of deregulated purine biosynthesis in NADH accumulation-associated disorders and demonstrate the utility of EcSTH in manipulating NADH/NAD+ and NADPH/NADP+.


Assuntos
Escherichia coli , NAD , Animais , NADP/metabolismo , NAD/metabolismo , Oxirredução , Escherichia coli/metabolismo , Morte Celular , Mamíferos/metabolismo
13.
Nat Commun ; 13(1): 6350, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289222

RESUMO

The methyltransferase like 3 (METTL3) has been generally recognized as a nuclear protein bearing oncogenic properties. We find predominantly cytoplasmic METTL3 expression inversely correlates with node metastasis in human cancers. It remains unclear if nuclear METTL3 is functionally distinct from cytosolic METTL3 in driving tumorigenesis and, if any, how tumor cells sense oncogenic insults to coordinate METTL3 functions within these intracellular compartments. Here, we report an acetylation-dependent regulation of METTL3 localization that impacts on metastatic dissemination. We identify an IL-6-dependent positive feedback axis to facilitate nuclear METTL3 functions, eliciting breast cancer metastasis. IL-6, whose mRNA transcript is subjected to METTL3-mediated m6A modification, promotes METTL3 deacetylation and nuclear translocation, thereby inducing global m6A abundance. This deacetylation-mediated nuclear shift of METTL3 can be counterbalanced by SIRT1 inhibition, a process that is further enforced by aspirin treatment, leading to ablated lung metastasis via impaired m6A methylation. Intriguingly, acetylation-mimetic METTL3 mutant reconstitution results in enhanced translation and compromised metastatic potential. Our study identifies an acetylation-dependent regulatory mechanism determining the subcellular localization of METTL3, which may provide mechanistic clues for developing therapeutic strategies to combat breast cancer metastasis.


Assuntos
Neoplasias da Mama , Metiltransferases , Humanos , Feminino , Metiltransferases/metabolismo , Acetilação , Sirtuína 1/metabolismo , Interleucina-6/metabolismo , RNA Mensageiro/metabolismo , Carcinogênese , Neoplasias da Mama/genética , Proteínas Nucleares/metabolismo , Aspirina
14.
Genes Dis ; 9(4): 1086-1098, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35685460

RESUMO

Epithelial-to-mesenchymal transition (EMT) activation is important in cancer progression and metastasis. Evidence indicates that nc886 is a representative Pol III gene that processes microRNA products via Dicer and further downregulates its target gene transforming growth factor- ß1 (TGF-ß1), which is the most prominent inducer of EMT in prostate cancer (PC). Consistent with the previous literature, we found that nc886 downregulation was strongly associated with metastatic behavior and showed worse outcomes in PC patients. However, little is known about the association between nc886 and the EMT signaling pathway. We developed a PC cell model with stable overexpression of nc886 and found that nc886 changed cellular morphology and drove MET. The underlying mechanism may be related to its promotion of SNAIL protein degradation via ubiquitination, but not to its neighboring genes, TGFß-induced protein (TGFBI) and SMAD5, which are Pol II-transcribed. TGF-ß1 also override nc886 promotion of MET via transient suppression the transcription of nc886, promotion of TGFBI or increase in SMAD5 phosphorylation. Both nc886 inhibition and TGFBI activation occur regardless of their methylation status. The literature suggests that MYC inhibition by TGF-ß1 is attributed to nc886 downregulation. We incidentally identified MYC-associated zinc finger protein (MAZ) as a suppressive transcription factor of TGFBI, which is controlled by TGF-ß1. We elucidate a new mechanism of TGF-ß1 differential control of Pol II and the transcription of its neighboring Pol III gene and identify a new EMT unit consisting of nc886 and its neighboring genes.

15.
Cell Death Discov ; 7(1): 204, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354052

RESUMO

Adriamycin (ADR) is a chemotherapeutic drug widely utilized to treat multiple types of cancers; however, the clinical efficacy of ADR is compromised due to the development of drug resistance in patients. The combination of drugs with ADR may provide a better therapeutic regimen to overcome this obstacle. Glutaminase (GLS) has been explored as a therapeutic cancer target, and its inhibition also results in increased sensitivity of tumor cells to chemotherapeutic agents. This study aimed to investigate whether GLS inhibition could reverse ADR resistance. We treated the ADR-resistant MCF-7 (MCF-7ADR) cells with a GLS inhibitor, compound 968 or CB-839, in combination with ADR. We found that compound 968, rather than CB-839, together with ADR synergistically inhibited the cell viability. These results indicated that compound 968 reversed ADR resistance in MCF-7ADR cells independently of GLS. Moreover, we modified the structure of compound 968 and finally obtained a compound 968 derivative, SY-1320, which was more potent than compound 968 in eliminating the drug resistance in MCF-7ADR cells. Furthermore, using drug affinity responsive target stability and streptavidin-biotin immunoprecipitation assays, we demonstrated that SY-1320 could specifically target P-glycoprotein (P-gp) and increase ADR accumulation through inhibition of P-gp, thereby resulting in cell death in MCF-7ADR cells. Together, our findings indicate that compound 968 or SY-1320 might be a promising drug for new combination chemotherapy in breast cancer to overcome the drug resistance.

16.
Cancer Biol Med ; 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34264564

RESUMO

OBJECTIVE: B-cell antigen receptor (BCR) signaling is required to maintain the physiological functions of normal B cells and plays an important pathogenic role in B-cell malignancies. Bruton tyrosine kinase (BTK), a critical mediator of BCR signaling, is an attractive target for the treatment of B-cell malignancies. This study aimed to identify a highly potent and selective BTK inhibitor. METHODS: Homogeneous time-resolved fluorescence assays were used to screen BTK inhibitors. Typhoon fluorescence imaging and Western blot analysis were used to confirm the effects of SY-1530 on the BCR signaling pathway. Additionally, the anti-tumor activities of SY-1530 were evaluated in TMD8 xenografts and spontaneous canine B-cell lymphoma. RESULTS: We found a novel irreversible and non-competitive inhibitor of BTK, SY-1530, which provided dose-dependent and time-dependent inhibition. SY-1530 selectively bound to BTK rather than inducible T-cell kinase; consequently, it did not significantly affect T-cell receptor signaling and caused limited off-target effects. SY-1530 blocked the BCR signaling pathway through down-regulation of BTK activity, thus leading to impaired phosphorylation of BTK and its downstream kinases. Moreover, SY-1530 induced apoptosis in a caspase-dependent manner and efficaciously inhibited tumor growth in mouse xenograft models of B-cell malignancy (P < 0.001). SY-1530 also induced positive clinical responses in spontaneous canine B-cell lymphoma. CONCLUSIONS: SY-1530 is an irreversible and selective BTK inhibitor that shows inhibitory effects on B-cell malignancies by blocking the BCR signaling pathway. Therefore, it may be a promising therapeutic approach for the treatment of B-cell malignancies.

17.
Front Med ; 15(5): 679-692, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34302614

RESUMO

Metabolic reprogramming, such as abnormal utilization of glucose, addiction to glutamine, and increased de-novo lipid synthesis, extensively occurs in proliferating cancer cells, but the underneath rationale has remained to be elucidated. Based on the concept of the degree of reduction of a compound, we have recently proposed a calculation termed as potential of electron transfer (PET), which is used to characterize the degree of electron redistribution coupled with metabolic transformations. When this calculation is combined with the assumed model of electron balance in a cellular context, the enforced selective reprogramming could be predicted by examining the net changes of the PET values associated with the biochemical pathways in anaerobic metabolism. Some interesting properties of PET in cancer cells were also discussed, and the model was extended to uncover the chemical nature underlying aerobic glycolysis that essentially results from energy requirement and electron balance. Enabling electron transfer could drive metabolic reprogramming in cancer metabolism. Therefore, the concept and model established on electron transfer could guide the treatment strategies of tumors and future studies on cellular metabolism.


Assuntos
Glicólise , Neoplasias , Elétrons , Metabolismo Energético , Glucose , Humanos
18.
J Proteome Res ; 20(7): 3664-3677, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34097416

RESUMO

Pseudomonas savastanoi pv. phaseolicola causes halo blight disease in the common bean Phaseolus vulgaris. The bacterium invades the leaf apoplast and uses a type III secretion system to inject effector proteins into a bean cell to interfere with the bean immune system. Beans counter with resistance proteins that can detect effectors and coordinate effector-triggered immunity responses transduced by salicylic acid, the primary defense hormone. Effector-triggered immunity halts bacterial spread, but its direct effect on the bacterium is not known. In this study, mass spectrometry of bacterial infections from immune and susceptible beans revealed that immune beans inhibited the accumulation of bacterial proteins required for virulence, secretion, motility, chemotaxis, quorum sensing, and alginate production. Sets of genes encoding these proteins appeared to function in operons, which implies that immunity altered the coregulated genes in the bacterium. Immunity also reduced amounts of bacterial methylglyoxal detoxification enzymes and their transcripts. Treatment of bacteria with salicylic acid, the plant hormone produced during immunity, reduced bacterial growth, decreased gene expression for methylglyoxal detoxification enzymes, and increased bacterial methylglyoxal concentrations in vitro. Increased methylglyoxal concentrations reduced bacterial reproduction. These findings support the hypothesis that plant immunity involves the chemical induction of adverse changes to the bacterial proteome to reduce pathogenicity and to cause bacterial self-toxicity.


Assuntos
Phaseolus , Pseudomonas syringae , Proteínas de Bactérias , Doenças das Plantas , Imunidade Vegetal , Pseudomonas , Virulência
20.
Phytopathology ; 111(5): 893-895, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33315475

RESUMO

Pseudomonas savastanoi pv. phaseolicola causes halo blight disease on Phaseolus vulgaris. Using a long-read DNA sequencing platform, we assembled the genome sequences for P. savastanoi pv. phaseolicola races 5 and 8 that have distinguishable avirulent and virulent phenotypes on Phaseolus vulgaris PI G19833, a common bean with an annotated genome sequence. The 12 race 5 assemblies comprise two major 4.5 and 1.4 Mb chromosome-like contigs and 10 smaller contigs. The four race 8 assemblies comprise a major 6.1 Mb chromosome and three smaller contigs. Annotation yielded 5,890 genes for race 5 and 5,919 genes for race 8. These data will enable the discovery of the genetic and proteomic differences between these two races and allow comparisons to other races for which genomic information already exists.


Assuntos
Phaseolus , Pseudomonas syringae , Genômica , Phaseolus/genética , Doenças das Plantas , Proteômica , Pseudomonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...