Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28806, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617955

RESUMO

The conjunctiva of primary open angle glaucoma patients showed high level of oxidized low-density lipoprotein (ox-LDL), which is associated with the inflammatory response. Microglia and macrophages are the immune cells involved in retinal ganglion cell survival regulation; yet, their roles of the ox-LDL-induced inflammation in glaucoma remain elusive. Here we aimed to investigate the lipid uptake, inflammatory cytokine expression, and metabolomics profiles of human and murine-derived microglial and macrophage cell lines treated with ox-LDL. Under the same ox-LDL concentration, macrophages exhibited higher lipid uptake and expression of pro-inflammatory cytokines as compared to microglia. The ox-LDL increased the levels of fatty acid metabolites in macrophages and sphingomyelin metabolites in microglia. In summary, this study revealed the heterogeneity in the inflammatory capacity and metabolic profiles of macrophages and microglia under the stimulation of ox-LDL.

2.
Database (Oxford) ; 20232023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38109881

RESUMO

The aim of the study is to establish an online database for predicting protein structures altered in ocular diseases by Alphafold2 and RoseTTAFold algorithms. Totally, 726 genes of multiple ocular diseases were collected for protein structure prediction. Both Alphafold2 and RoseTTAFold algorithms were built locally using the open-source codebases. A dataset with 48 protein structures from Protein Data Bank (PDB) was adopted for algorithm set-up validation. A website was built to match ocular genes with the corresponding predicted tertiary protein structures for each amino acid sequence. The predicted local distance difference test-Cα (pLDDT) and template modeling (TM) scores of the validation protein structure and the selected ocular genes were evaluated. Molecular dynamics and molecular docking simulations were performed to demonstrate the applications of the predicted structures. For the validation dataset, 70.8% of the predicted protein structures showed pLDDT greater than 90. Compared to the PDB structures, 100% of the AlphaFold2-predicted structures and 97.9% of the RoseTTAFold-predicted structure showed TM score greater than 0.5. Totally, 1329 amino acid sequences of 430 ocular disease-related genes have been predicted, of which 75.9% showed pLDDT greater than 70 for the wildtype sequences and 76.1% for the variant sequences. Small molecule docking and molecular dynamics simulations revealed that the predicted protein structures with higher confidence scores showed similar molecular characteristics with the structures from PDB. We have developed an ocular protein structure database (EyeProdb) for ocular disease, which is released for the public and will facilitate the biological investigations and structure-based drug development for ocular diseases. Database URL:  http://eyeprodb.jsiec.org.


Assuntos
Inteligência Artificial , Oftalmopatias , Humanos , Simulação de Acoplamento Molecular , Proteínas/química , Algoritmos , Oftalmopatias/genética , Bases de Dados de Proteínas , Conformação Proteica
3.
Cell Death Dis ; 14(3): 227, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991017

RESUMO

Diabetic retinopathy (DR) is a leading cause of blindness that poses significant public health concerns worldwide. Increasing evidence suggests that neuroinflammation plays a key role in the early stages of DR. Microglia, long-lived immune cells in the central nervous system, can become activated in response to pathological insults and contribute to retinal neuroinflammation. However, the molecular mechanisms of microglial activation during the early stages of DR are not fully understood. In this study, we used in vivo and in vitro assays to investigate the role of microglial activation in the early pathogenesis of DR. We found that activated microglia triggered an inflammatory cascade through a process called necroptosis, a newly discovered pathway of regulated cell death. In the diabetic retina, key components of the necroptotic machinery, including RIP1, RIP3, and MLKL, were highly expressed and mainly localized in activated microglia. Knockdown of RIP3 in DR mice reduced microglial necroptosis and decreased pro-inflammatory cytokines. Additionally, blocking necroptosis with the specific inhibitor GSK-872 improved retinal neuroinflammation and neurodegeneration, as well as visual function in diabetic mice. RIP3-mediated necroptosis was activated and contributed to inflammation in BV2 microglia under hyperglycaemic conditions. Our data demonstrate the importance of microglial necroptosis in retinal neuroinflammation related to diabetes and suggest that targeting necroptosis in microglia may be a promising therapeutic strategy for the early stages of DR.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Animais , Camundongos , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Microglia/metabolismo , Necroptose/fisiologia , Doenças Neuroinflamatórias , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
4.
Cells ; 12(1)2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36611964

RESUMO

Cluster of differentiation 36 (CD36) belongs to the B2 receptors of the scavenger receptor class B family, which is comprised of single-chain secondary transmembrane glycoproteins. It is present in a variety of cell types, including monocytes, macrophages, microvascular endothelial cells, adipocytes, hepatocytes, platelets, skeletal muscle cells, kidney cells, cardiomyocytes, taste bud cells, and a variety of other cell types. CD36 can be localized on the cell surface, mitochondria, endoplasmic reticulum, and endosomes, playing a role in lipid accumulation, oxidative stress injury, apoptosis, and inflammatory signaling. Recent studies have found that CD36 is expressed in a variety of ocular cells, including retinal pigment epithelium (RPE), retinal microvascular endothelial cells, retinal ganglion cells (RGC), Müller cells, and photoreceptor cells, playing an important role in eye diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. Therefore, a comprehensive understanding of CD36 function and downstream signaling pathways is of great significance for the prevention and treatment of eye diseases. This article reviews the molecular characteristics, distribution, and function of scavenger receptor CD36 and its role in ophthalmology in order to deepen the understanding of CD36 in eye diseases and provide new ideas for treatment strategies.


Assuntos
Antígenos CD36 , Células Endoteliais , Células Endoteliais/metabolismo , Antígenos CD36/metabolismo , Proteínas de Membrana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Receptores Depuradores/metabolismo
5.
Front Psychiatry ; 10: 289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231246

RESUMO

Adverse early life stress is a major cause of vulnerability to various mental disorders in adulthood, including post-traumatic stress disorder (PTSD). Recent studies have suggested that early life stress can help the body adapt optimally when faced with stressful trauma in adult life. An interaction may exist between early life stress (e.g., childhood trauma) and vulnerability to PTSD. This study aimed to evaluate emotion-related behaviors and verify the long-lasting effects of cognitive aspects of PTSD after exposure to severe adverse early life stress, such as long-term separation. Adverse early life stress was simulated by subjecting rats to 3 or 6 consecutive hours of maternal separation (MS) daily, from postnatal day (PND) 2 to PND 14. Single-prolonged stress (SPS) was simulated on PND 80 to imitate other adulthood stresses of PTSD with gender divisions (M-MS3h-PTSD, F-MS3h-PTSD, M-MS6h-PTSD, F-MS6h-PTSD, M-PTSD, and F-PTSD). After the MS and PTSD sessions, behavioral tests were conducted to assess the effectiveness of these treatments, which included an open field test (OFT), elevated plus maze test (EPMT), water maze test (WMT), and forced swimming test (FST) to detect anxiety-like behavior (OFT and EPMT), memory behavior (WMT), and depressive behavior (FST). The M-MS3h-PTSD group had fewer time entries into the open arms of EPMT than the F-MS3h-PTSD group, and the M-MS6h-PTSD group demonstrated fewer up-right postures in the OFT than the F-MS6h-PTSD group. The M-MS3h-PTSD group exhibited more exploratory behavior than the M-MS6h-PTSD and M-PTSD groups in the OFT. Less exploratory behavior was observed in the F-MS3h-PTSD group than in the F-MS6h-PTSD group, which demonstrated significantly increased freezing times in the FST compared to the F-PTSD group. The WMT revealed significant differences in learning and memory performance between the M-MS3h-PTSD group and other treatment groups, which were not found in the female rats. These findings demonstrate that an early stressful experience, such as MS, may be involved in helping the body adapt optimally when faced with additional trauma in adulthood, although mild early life stress might benefit learning and memory among males.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...