Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1386109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708391

RESUMO

Compared to conventional irrigation and fertilization, the Water-fertilizer coupling can significantly enhance the efficiency of water and fertilizer utilization, thereby promoting crop growth and increasing yield. Targeting the challenges of poor crop growth, low yield, and inefficient water and fertilizer utilization in the arid region of northwest China under conventional irrigation and fertilization practices. Therefore, a two-year on-farm experiment in 2022 and 2023 was conducted to study the effects of water-fertilizer coupling regulation on pumpkin growth, yield, water consumption (ET), and water and fertilizer use efficiency. Simultaneously the comprehensive evaluation of multiple objectives was carried out using principal component analysis (PCA) methods, so as to propose an suitable water-fertilizer coupling regulation scheme for the region. The experiment was set up as a two-factor trial using water-fertilizer integration technology under three irrigation volume (W1 = 37.5 mm, W2 = 45.5 mm, W3 = 52.5mm) and three organic fertilizer application amounts (F1 = 3900-300 kg ha-1, F2 = 4800-450 kg·ha-1, F3 = 5700-600 kg·ha-1), with the traditional irrigation and fertilization scheme from local farmers as control treatments (CK). The results indicated that irrigation volume and organic fertilizer application significantly affected pumpkin growth, yield, and water and fertilizer use efficiency (P<0.05). Pumpkin yield increased with increasing irrigation volume. Increasing organic fertilizer levels within a certain range benefited pumpkin plant growth, dry matter accumulation, and yield, however, excessive application beyond a certain level had inhibited effects on those. The increased fertilizer application under the same irrigation volume enhanced the efficiency of water and fertilizer utilization. However excessive irrigation only resulted in inefficient water consumption, reducing the water and fertilizer use efficiency. The Comprehensive evaluation by PCA revealed that the F2W3 treatment outperformed all the others, effectively addressing the triple objectives of increasing production, improving efficiency, and promoting green production. Therefore, F2W3 (Irrigation volume: 52.5 mm; Fertilizer application amounts: 4800-450 kg/ha-1) as a water and fertilizer management scheme for efficient pumpkin production in the arid region of northwest China.

2.
Adv Sci (Weinh) ; 11(12): e2307020, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38239054

RESUMO

Control of convection plays an important role in heat transfer regulation, bio/chemical sensing, phase separation, etc. Current convection controlling systems generally depend on engineered energy sources to drive and manipulate the convection, which brings additional energy consumption into the system. Here the use of human hand as a natural and sustainable infrared (IR) radiation source for the manipulation of liquid convection is demonstrated. The fluid can sense the change of the relative position or the shape of the hand with the formation of different convection patterns. Besides the generation of static complex patterns, dynamic manipulation of convections can also be realized via moving of hand or finger. The use of such sustainable convections to control the movement of a floating "boat" is further achieved. The use of human hands as the natural energy sources provides a promising approach for the manipulation of liquid convection without the need of extra external energy, which may be further utilized for low-cost and intelligent bio/chemical sensing and separation.


Assuntos
Convecção , Temperatura Alta , Humanos , Raios Infravermelhos
3.
Nano Lett ; 20(11): 7874-7881, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33078949

RESUMO

A simple, fast, and contactless alternative for the generation of nanodroplets in solution is to apply light to stimulate their formation at a surface. In this work, a light-driven mechanism for the generation of nanodroplets is demonstrated by using a porous membrane. The membrane is placed at the interface between oil and water during the nanodroplet generation process. As light illuminates the membrane a photothermal conversion process induces the growth and release of water vapor bubbles into the aqueous phase. This release leads to the fluctuation of local pressure around the pores and enables the generation of oil nanodroplets. A computational simulation of the fluid dynamics provides insight into the underlying mechanism and the extent to which it is possible to increase nanodroplet concentrations. The ability to form nanodroplets in solutions without the need for mechanical moving parts is significant for the diverse biomedical and chemical applications of these materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...