Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400638, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804126

RESUMO

The lithium deposited via the complex electrochemical heterogeneous lithium deposition reaction (LDR) process on a lithium foil-based anode (LFA) forms a high-aspect-ratio shape whenever the reaction kinetics reach its limit, threatening battery safety. Thereby, a research strategy that boosts the LDR kinetics is needed to construct a high-power and safe lithium metal anode. In this study, the kinetic limitations of the LDR process on LFA are elucidated through operando and ex situ observations using in-depth electrochemical analyses. In addition, ultra-thin (≈0.5 µm) and high modulus (≥19 GPa) double-walled carbon nanotube (DWNT) membranes with different surface properties are designed to catalyze high-safety LDRs. The oxygen-functionalized DWNT membranes introduced on the LFA top surface simultaneously induce multitudinous lithium nuclei, leading to film-like lithium deposition even at a high current density of 20 mA cm-2. More importantly, the layer-by-layer assembly of the oxygen-functionalized and pristine DWNT membranes results in different surface energies between the top and bottom surfaces, enabling selective surface LDRs underneath the high-modulus bilayer membranes. The protective LDR on the bilayer-covered LFA guarantees an invulnerable cycling process in large-area pouch cells at high current densities for more than 1000 cycles, demonstrating the practicability of LFA in a conventional liquid electrolyte system.

2.
Adv Sci (Weinh) ; 11(25): e2400460, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38654622

RESUMO

Lightweight structural materials are commonly used as effective fillers for advanced composites with high toughness. This study focused on enhancing the toughness of direct-spun carbon nanotube yarns (CNTYs) by controlling the micro-textural structure using a water-gap-based direct spinning. Drawing inspiration from the structural features of natural spider silk fibroin, characterized by an α-helix in the amorphous region and ß-sheet in the crystalline region, multiscale bundles within CNTYs are reorganized into a unique nano-coil-like structure. This nano-coiled structure facilitated the efficient dissipation of external mechanical loads through densification with the rearrangement of multiscale bundles, improving specific strength and strain. The resulting CNTYs exhibited exceptional mechanical properties with toughness reaching 250 J g-1, making them promising alternatives to commercially available fibers in lightweight, high-toughness applications. These findings highlight the significance of nano-coiling engineering for emulating bio-inspired micro-textural structures, achieving remarkable enhancement in the toughness of CNTYs.

3.
Nano Lett ; 23(8): 3128-3136, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36951295

RESUMO

In this study, a range of carbon nanotube yarn (CNTY) architectures was examined and controlled by chemical modification to gain a deeper understanding of CNTY load-bearing systems and produce lightweight and superstrong CNTYs. The architecture of CNTY, which has polymer layers surrounding a compact bundle without hampering the original state of the CNTs in the bundle, is a favorable design for further chemical cross-linking and for enhancing the load-transfer efficiency, as confirmed by in situ Raman spectroscopy under a stress load. The resulting CNTY exhibited excellent mechanical performance that exceeded the specific strength of the benchmark, high-performance fibers. This exceptional strength of the CNTY makes it a promising candidate for the cable of a space elevator traveling from the Earth to the International Space Station given its strength of 4.35 GPa/(g cm-3), which can withstand the self-weight of a 440 km cable.

4.
Adv Mater ; 35(12): e2209128, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36625665

RESUMO

The galvanostatic lithiation/sodiation voltage profiles of hard carbon anodes are simple, with a sloping drop followed by a plateau. However, a precise understanding of the corresponding redox sites and storage mechanisms is still elusive, which hinders further development in commercial applications. Here, a comprehensive comparison of the lithium- and sodium-ion storage behaviors of hard carbon is conducted, yielding the following key findings: 1) the sloping voltage section is presented by the lithium-ion intercalation in the graphitic lattices of hard carbons, whereas it mainly arises from the chemisorption of sodium ions on their inner surfaces constituting closed pores, even if the graphitic lattices are unoccupied; 2) the redox sites for the plateau capacities are the same as those for the closed pores regardless of the alkali ions; 3) the sodiation plateau capacities are mostly determined by the volume of the available closed pore, whereas the lithiation plateau capacities are primarily affected by the intercalation propensity; and 4) the intercalation preference and the plateau capacity have an inverse correlation. These findings from extensive characterizations and theoretical investigations provide a relatively clear elucidation of the electrochemical footprint of hard carbon anodes in relation to the redox mechanisms and storage sites for lithium and sodium ions, thereby providing a more rational design strategy for constructing better hard carbon anodes.

5.
Adv Sci (Weinh) ; 10(2): e2204250, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36404109

RESUMO

Super strong fibers, such as carbon or aramid fibers, have long been used as effective fillers for advanced composites. In this study, the highest tensile strength of 5.5 N tex-1 for carbon nanotube yarns (CNTYs) is achieved by controlling the micro-textural structure through a facile and eco-friendly bundle engineering process in direct spinning without any post-treatment. Inspired by the strengthening mechanism of the hierarchical fibrillary structure of natural cellulose fiber, this study develops multiscale bundle structures in CNTYs whereby secondary bundles, ≈200 nm in thickness, evolve from the assembly of elementary bundles, 30 nm in thickness, without any damage, which is a basic load-bearing element in CNTY. The excellent mechanical performance of these CNTYs makes them promising substitutes for the benchmark, lightweight, and super strong commercial fibers used for energy-saving structural materials. These findings address how the tensile strength of CNTY can be improved without additional post-treatment in the spinning process if the development of the aforementioned secondary bundles and the corresponding orientations are properly engineered.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Resistência à Tração , Celulose
6.
Nat Commun ; 13(1): 6750, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347849

RESUMO

Magnetically responsive composites can impart maneuverability to miniaturized robots. However, collective actuation of these composite robots has rarely been achieved, although conducting cooperative tasks is a promising strategy for accomplishing difficult missions with a single robot. Here, we report multimodal collective swimming of ternary-nanocomposite-based magnetic robots capable of on-demand switching between rectilinear translational swimming and rotational swimming. The nanocomposite robots comprise a stiff yet lightweight carbon nanotube yarn (CNTY) framework surrounded by a magnetic polymer composite, which mimics the hierarchical architecture of musculoskeletal systems, yielding magnetically articulated multiple robots with an agile above-water swimmability (~180 body lengths per second) and modularity. The multiple robots with multimodal swimming facilitate the generation and regulation of vortices, enabling novel vortex-induced transportation of thousands of floating microparticles and heavy semi-submerged cargos. The controllable collective actuation of these biomimetic nanocomposite robots can lead to versatile robotic functions, including microplastic removal, microfluidic vortex control, and transportation of pharmaceuticals.


Assuntos
Nanocompostos , Robótica , Natação/fisiologia , Plásticos , Biomimética
8.
Sci Adv ; 8(1): eabl8631, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34985946

RESUMO

Fiber-type solid-state supercapacitors are being widely investigated as stable power supply for next-generation wearable and flexible electronics. Integrating both high charge storage capability and superior mechanical properties into one fiber is crucial to realize fiber-type solid-state supercapacitors. In this study, we design a "jeweled necklace"­like hybrid composite fiber comprising double-walled carbon nanotube yarn and metal-organic frameworks (MOFs). Subsequent heat treatment transforms MOFs into MOF-derived carbon (MDC), thereby maximizing energy storage capability while retaining the superior mechanical properties. The hybrid fibers with tunable properties, including thickness and MDC loading amount, exhibit a high energy density of 7.54 milliwatt-hour per cubic centimeter at a power density of 190.94 milliwatt per cubic centimeter. The mechanical robustness of the hybrid fibers allows them to operate under various mechanical deformation conditions. Furthermore, it is demonstrated that the resulting superstrong fiber delivers sufficient power to switch on light-emitting diodes by itself while suspending 10-kilogram weight.

9.
Macromol Rapid Commun ; 43(1): e2100560, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34643980

RESUMO

Anisotropic microstructures are utilized in various fields owing to their unique properties, such as reversible shape transitions or on-demand and sequential release of drug combinations. In this study, anisotropic multicompartmental microfibers composed of different polymers are prepared via charge reversal electrohydrodynamic (EHD) co-jetting. The combination of various polymers, such as thermoplastic polyurethane, poly(D,L-lactide-co-glycolide), poly(vinyl cinnamate), and poly(methyl methacrylate), results in microfibers with distinct compositional boundaries. Charge reversal during EHD co-jetting enables facile fabrication of multicompartmental microfibers with the desired composition and tunable inner architecture, broadening their spectrum of potential applications, such as functional microfibers and cell scaffolds with multiple physical and chemical properties.


Assuntos
Polímeros , Poliuretanos , Anisotropia
10.
Adv Sci (Weinh) ; 8(22): e2102718, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34590441

RESUMO

It is of importance to explore a new carbon nanomaterial possessing vital functions to fulfill the high standards for practical achievement of the electromagnetic (EM) barrier for blocking EM waves and the electrochemical (EC) barrier as a functional separator for EC energy storage. Herein, facile synthesis of a new class of carbon nanostructures, which consist of interconnected N-doped graphitic carbon nanocubes partially embedded by nickel nanoparticles, is described. The hollow interior of graphitic nanocube induces internal reflection of EM waves and confines active materials of EC energy storage. Nitrogen functionalities implanted in graphitic structure enhance electrical conductivity as well as improve chemical interaction with active materials. Furthermore, nickel nanoparticles in graphitic nanocube function as an EM wave-absorbing material and an electrocatalyst for EC energy storage. Through comprehensive assessments, remarkable performances originating from distinctive nanostructures give new insights into structural design for the carbon nanostructure-based high-performance EM and EC barriers.

11.
Microorganisms ; 9(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809793

RESUMO

A yeast starter is formulated for commercial practices, including storage and distribution. The cell viability of the yeast starter is one of the most important factors for manufacturing alcoholic beverages to ensure their properties during the fermentation and formulation processes. In this study, 64 potential protective agents were evaluated to enhance the survival rate of the brewing yeast Saccharomyces cerevisiae 88-4 after freeze-drying. In addition, the optimized combination of protective agents was assessed for long-term storage. Finally, response surface methodology was applied to investigate the optimal concentration of each protectant. Twenty of the 64 additives led to an increase in the survival rate of freeze-dried S. cerevisiae 88-4. Among the various combinations of protectants, four had a survival rate >95%. The combination of skim milk, maltose, and maltitol exhibited the best survival rate of 61% after 42 weeks in refrigerated storage, and the composition of protectants optimized by response surface methodology was 6.5-10% skim milk, 1.8-4.5% maltose, and 16.5-18.2% maltitol. These results demonstrated that the combination of multiple protectants could alleviate damage to yeasts during freeze-drying and could be applied to the manufacturing starters for fermented foods.

12.
Small ; 16(33): e2003104, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32583953

RESUMO

Continuous efforts have been made to achieve nanostructured carbon materials with highly ordered graphitic structures using facile synthetic methods. 3D graphite nanoballs (GNBs) are synthesized by the low-temperature pyrolysis of a non-graphitizable precursor, tannic acid (TA). Abundant phenol groups on TA bind to Ni2+ to form metal-phenolic coordination, which renders each Ni cation to be atomically distributed by the TA ligands. Even at low temperatures (1000 °C), highly ordered graphitic structure is promoted by the distributed Ni nanoparticles that act as a graphitization catalyzer. The crystallinity of the GNB is fully corroborated by the intense 2D peak observed in Raman spectroscopy. In particular, the graphitic layers have orientations pointing toward multidirections, which are beneficial for the rapid transport of Li-ions into graphite grains. The resulting materials exhibit outstanding electrochemical performance (120 mAh g-1 at 5 C and 282 mAh g-1 at 0.5 C after 500 cycles) when evaluated as a fast-chargeable negative electrode for lithium ion batteries.

13.
Materials (Basel) ; 14(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383785

RESUMO

Carbon nanotube fiber (CNTF), prepared by the direct-spinning method, has several nanopores, and the infiltration behavior of resins into these nanopores could influence the mechanical properties of CNTF-based composites. In this work, we investigated the infiltration behavior of resin into the nanopores of the CNTFs and mechanical properties of the CNTF-based single-fiber composites using six epoxy resins with varying viscosities. Epoxy resins can be easily infiltrated into the nanopores of the CNTF; however, pores appear when a resin with significantly high or low viscosity is used in the preparation process of the composites. All the composite fibers exhibit lower load-at-break value compared to as-densified CNTF, which is an unexpected phenomenon. It is speculated that the bundle structure of the CNTF can undergo changes due to the high affinity between the epoxy and CNTF. As composite fibers containing pores exhibit an even lower load-at-break value, the removal of pores by the defoaming process is essential to enhance the mechanical properties of the composite fibers.

14.
Nanoscale Adv ; 1(12): 4697-4703, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36133104

RESUMO

Ammonia borane (AB, NH3BH3) is a highly promising hydrogen storage material, but its high dehydrogenation temperature hinders its wide use in practice. The infiltration of AB into the pores of porous materials can lower the dehydrogenation temperature by what is known as the nanoconfinement effect. Nonetheless, it is unclear as to whether this phenomenon stems from a catalytic effect or the nanosize effect. In this work, carbon nanomaterials with a uniform pore size and with inertness to AB were chosen as nanoscaffolds without catalytic sites to control the particle size of AB. It is proved experimentally that the dehydrogenation temperature of AB is inversely proportional to the reciprocal of the particle size, which means that the nanoconfinement effect can be caused solely by the nanosize effect without a catalytic effect.

15.
ACS Nano ; 12(11): 11106-11119, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30380831

RESUMO

N-doped hierarchical porous carbon with uniaxially packed carbon nanotubes (CNTs) was prepared by copolymer single-nozzle electrospinning, carbonization, and KOH activation. Densely and uniaxially aligned CNTs improve the electrical conductivity and act as a structural scaffold, enhancing the electrochemical performance of the anode. A partially graphitized N-doped carbon shell, which has a rapid ion accessible pore network and abundant redox sites, was designed to expand the redox sites from the surface of the material to the whole material, including the inner part. As an anode, this material exhibited a superior reversible capacity of 1814.3 mA h g-1 at 50 mA g-1 and of 850.1 mA h g-1 at 1000 mA g-1. Furthermore, the reversible capacity decreased by only 36% after 400 cycles and showed superior rate capability to that of the same material without CNTs, indicating that the CNT acted successfully as a structural scaffold and enhanced the electrical conductivity. This study not only allowed the rational design of the ideal structure of CNT-based carbonaceous anode material, which has both a rapid ion accessible structure and fast electron-transfer path, but also shed light on a potential strategy by which to use CNTs to modify the nitrogen bonding configuration in N-doped carbon for better electrochemical performance.

16.
ACS Nano ; 11(8): 7608-7614, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28700205

RESUMO

As practical interest in flexible/or wearable power-conversion devices increases, the demand for high-performance alternatives to thermoelectric (TE) generators based on brittle inorganic materials is growing. Herein, we propose a flexible and ultralight TE generator (TEG) based on carbon nanotube yarn (CNTY) with excellent TE performance. The as-prepared CNTY shows a superior electrical conductivity of 3147 S/cm due to increased longitudinal carrier mobility derived from a highly aligned structure. Our TEG is innovative in that the CNTY acts as multifunctions in the same device. The CNTY is alternatively doped into n- and p-types using polyethylenimine and FeCl3, respectively. The highly conductive CNTY between the doped regions is used as electrodes to minimize the circuit resistance, thereby forming an all-carbon TEG without additional metal deposition. A flexible TEG based on 60 pairs of n- and p-doped CNTY shows the maximum power density of 10.85 and 697 µW/g at temperature differences of 5 and 40 K, respectively, which are the highest values among reported TEGs based on flexible materials. We believe that the strategy proposed here to improve the power density of flexible TEG by introducing highly aligned CNTY and designing a device without metal electrodes shows great potential for the flexible/or wearable power-conversion devices.

17.
Chem Commun (Camb) ; 53(49): 6573-6576, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28574561

RESUMO

The gas permeability of reduced graphene oxide (rGO) films is influenced by controlling the lateral size and void generation. Low gas permeability was achieved by the controlled synthesis of parent graphene oxide (GO). The organic device lifetime using rGO-coated barriers was prolonged by 65.9 times when compared to bare samples.

18.
ACS Appl Mater Interfaces ; 9(20): 17552-17564, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28460171

RESUMO

A facile purification method for oxidized carbon nanotubes (CNTs) is developed to preserve acidic carbon compounds (ACCs) for achieving high-quality dispersion of CNTs. The remaining ACCs, which originated from the surface destruction of CNTs during the oxidation process, are considered to play a crucial role in the dispersion of CNTs in water and various polar protic solvents. To elucidate the concrete role of ACCs, a direct titration method is applied to quantitatively investigate the degree of ionization of both CNTs and ACCs in their aqueous dispersions. While ACCs with strong carboxylic groups (pKa of around 2.9) are easily removed by the neutral or base washing of oxidized CNTs, which is common in the purification process, ACC-selective purification using acid washing preserves the ACCs attached to CNTs, thereby effectively stabilizing CNT dispersions in aqueous solutions. Additionally, the Hansen solubility parameters of ACC-preserved and ACC-removed CNTs were determined by the inverse gas chromatography method to estimate their miscibility in various solvents. The preserved ACCs significantly influenced the dispersibility of CNTs in polar protic solvents, which may widen the possible application of CNTs. Specifically, the ACC-preserved high-quality CNT dispersion produces high-performance CNT buckypaper with densely packed nanostructures. The Young's modulus and tensile strength of these buckypapers reach up to 12.0 and 91.0 MPa, respectively, which exceed those of ACC-removed CNTs in previous reports.

19.
ChemSusChem ; 10(8): 1675-1682, 2017 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-28058792

RESUMO

Future electronics applications such as wearable electronics depend on the successful construction of energy-storage devices with superior flexibility and high electrochemical performance. However, these prerequisites are challenging to combine: External forces often cause performance degradation, whereas the trade-off between the required nanostructures for strength and electrochemical performance only results in diminished energy storage. Herein, a flexible supercapacitor based on tannic acid (TA) and carbon nanotubes (CNTs) with a unique nanostructure is presented. TA was self-assembled on the surface of the CNTs by metal-phenolic coordination bonds, which provides the hybrid film with both high strength and high pseudocapacitance. Besides 17-fold increased mechanical strength of the final composite, the hybrid film simultaneously exhibits excellent flexibility and volumetric capacitance.


Assuntos
Carbono/química , Fontes de Energia Elétrica , Metais/química , Nanocompostos/química , Fenóis/química , Eletroquímica , Microscopia Eletrônica de Transmissão
20.
ACS Nano ; 10(2): 2184-92, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26795353

RESUMO

The self-assembled nanostructures of carbon nanomaterials possess a damage-tolerable architecture crucial for the inherent mechanical properties at both micro- and macroscopic levels. Bone, or "natural composite," has been known to have superior energy dissipation and fracture resistance abilities due to its unique load-bearing hybrid structure. However, few approaches have emulated the desirable structure using carbon nanomaterials. In this paper, we present an approach in fabricating a hybrid composite paper based on graphene oxide (GO) and carbon nanotube (CNT) that mimicks the natural bone structure. The size-tuning strategy enables smaller GO sheets to have more cross-linking reactions with CNTs and be homogeneously incorporated into CNT-assembled paper, which is advantageous for effective stress transfer. The resultant hybrid composite film has enhanced mechanical strength, modulus, toughness, and even electrical conductivity compared to previously reported CNT-GO based composites. We further demonstrate the usefulness of the size-tuned GOs as the "stress transfer medium" by performing in situ Raman spectroscopy during the tensile test.


Assuntos
Substitutos Ósseos/química , Grafite/química , Nanotubos de Carbono/química , Óxidos/química , Papel , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...