Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37510049

RESUMO

In this work, we investigate a novel intelligent surface-assisted multiuser multiple-input single-output multiple-eavesdropper (MU-MISOME) secure communication network where an intelligent reflecting surface (IRS) is deployed to enhance the secrecy performance and an intelligent transmission surface (ITS)-based transmitter is utilized to perform energy-efficient beamforming. A weighted sum secrecy rate (WSSR) maximization problem is developed by jointly optimizing transmit power allocation, ITS beamforming, and IRS phase shift. To solve this problem, we transform the objective function into an approximated concave form by using the successive convex approximation (SCA) technique. Then, we propose an efficient alternating optimization (AO) algorithm to solve the reformulated problem in an iterative way, where Karush-Kuhn-Tucker (KKT) conditions, the alternating direction method of the multiplier (ADMM), and majorization-minimization (MM) methods are adopted to derive the closed-form solution for each subproblem. Finally, simulation results are given to verify the convergence and secrecy performance of the proposed schemes.

2.
Entropy (Basel) ; 24(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35455109

RESUMO

In this paper, we propose an improved physical layer key generation scheme that can maximize the secret key capacity by deploying intelligent reflecting surface (IRS) near the legitimate user aiming at improving its signal-to-noise ratio (SNR). We consider the scenario of multiple input single output (MISO) against multiple relevant eavesdroppers. We elaborately design and optimize the reflection coefficient matrix of IRS elements that can improve the legitimate user's SNR through IRS passive beamforming and deteriorate the channel quality of eavesdroppers at the same time. We first derive the lower bound expression of the achievable key capacity, then solve the optimization problem based on semi-definite relaxation (SDR) and the convex-concave procedure (CCP) to maximize the secret key capacity. Simulation results show that our proposed scheme can significantly improve the secret key capacity and reduce hardware costs compared with other benchmark schemes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...