Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(28): 30131-30141, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39035904

RESUMO

Miscible gas flooding is an important approach for enhancing the recovery of unconventional oil reservoirs. The injected gas and crude oil components has a significant impact on the minimum miscible pressure. In order to clarify the miscibility characteristics and factors influencing the minimum miscibility pressure, combining PVT and slim tube experiments, the minimum miscibility pressure between Tuha low viscosity oil and different injected gas was measured. Additionally, chromatography experiments were conducted to study the composition changes of produced oil. The results indicate that when the injection pressure is higher than the minimum miscible pressure, the extraction effect of injected gas on heavy fraction (C16+) in crude oil is enhanced and the extraction effect on light alkanes (C1-C6) is reduced. The increase in the content of light alkanes (C1-C6) and middle distillates (C7-C15) in crude oil reduces the minimum miscibility pressure between crude oil and injected gas. Pipeline gas can effectively extract heavy fraction from crude oil, but its breakthrough time is early. Under the same pressure, earlier breakthrough time of injected gas makes it more difficult for the crude oil and injected gas to miscible. Through the analysis of experimental results, the following main conclusions are drawn: Immiscible flooding causes heavy fraction (C16+) in crude oil to remain, which might affect the physical properties of the reservoir, increasing the difficulty of subsequent development. Gas fingering phenomenon significantly influences the miscibility of injected gas and crude oil, and the viscosity ratio of injected gas and crude oil under high-pressure conditions can be used as an important criterion for screening injected gas.

2.
ACS Omega ; 7(36): 32250-32261, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36120018

RESUMO

Tight sedimentary tuff reservoirs (TSTRs) are a new type of tight oil reservoirs, which are mainly developed by water huff-n-puff (WHP). However, there is no quantitative study on the effect of water injection pressure (WIP) and fracture density (FD) on the oil recovery effect of WHP, and the reasons for the low flow-back rate (FR) of the injected water are also not fully explained. In this study, the real cores of TSTRs were used to simulate the seepage state of the matrix-fracture systems of the reservoir, the effects of WIP and FD on the WHP were quantitatively studied, and the reasons for the low FR of the injected water were comprehensively analyzed. The result shows that in five cycles of WHP, the recovery factor (RF) of the core only increases from 8.72 to 10.91% with the WIP increasing from 25 to 30 MPa. However, when the WIP is 40 MPa (rock breakdown pressure), the RF of the core reaches 16.47%, indicating that overfracture-pressure water injection has an obvious improvement effect on the oil recovery effect of WHP in TSTRs. Increasing the FD can also significantly improve the RF and oil recovery efficiency (ORE) of WHP in TSTRs. When the FD of the core increases from 0.34 to 0.44 cm-1, the RF of five cycles of WHP increases by 9.26%, the ORE increases by 8.61%, and the FR of the injected water decreases by 0.56%. The reasons for the low FR of the injected water in WHP in tight oil reservoirs are matrix water locking, fracture water locking, and reservoir nonconstant-volume water locking. The study can provide an important reference for the efficient development of the WHP in TSTRs.

3.
ACS Omega ; 7(25): 21595-21607, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35785313

RESUMO

The water injection huff and puff (WIHP) technology is regarded as one of the important means to improve the recovery factor (RF) of tight volcanic oil reservoirs (TVORs), but the influence of water injection pressure (WIP) and water injection method (WIM) on the oil recovery effect of WIHP has been rarely reported. In this paper, we first collected the real full-diameter cores from a TVOR and then simulated the distribution characteristics of fractures and matrix pores after hydraulic fracturing of the reservoir through the combination and cutting of the cores. Finally, we used the large-sized physical simulation device for tight oil WIHP that can bear high temperature and high pressure and a nuclear magnetic resonance instrument to conduct experiments of five cycles of constant pressure WIHP (CWIHP) with WIPs of 25, 32.5, and 40 MPa and step-by-step pressure rising WIHP (SWIHP) (the WIP was 25, 30, 33, 37, and 40 MPa in order) and obtained the liquid production law and mechanism of tight volcanic rock (TVR) under CWIHP and SWIHP. The result shows that under the CWIHP mode, the RF of TVR has a good power-law-positive correlation with the WIP. However, with the increase of WIHP cycles, the RF of CWIHP always decreases rapidly. In the WIHP of TVR, the injected water mainly collects oil in large pores (the pore radius is greater than 0.1 µm), and the closer the area to the outlet end of oil production and the higher the fracture density, the higher the RF. SWIHP can also effectively improve the RF of TVR, but compared with CWIHP with a WIP of 40 MPa, the amount of recovered oil decreases relatively slowly with the increase of WIHP cycles. In the first two cycles of the five cycles of WIHP, the RF of CWIHP was higher, but from the third cycle, the RF of SWIHP begins to be greater, and the more the number of cycles of WIHP, the more obvious the advantage of SWIHP. When the number of WIHP cycles exceeds 5, the oil recovery effect and the economy of SWIHP are better. This study can provide a solid theoretical basis for the efficient development of WIHP in TVORs.

4.
ACS Omega ; 7(2): 1956-1974, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35071885

RESUMO

Imbibition is an important mechanism to improve the recovery factor (RF) of a tight oil reservoir. Accurately evaluating the oil production capacity of tight oil reservoirs by imbibition is of great significance for the formulation of oilfield production plans and productivity prediction. However, there is currently no unified regulation on the selection of rock sample size in tight oil reservoir imbibition evaluation experiments, resulting in great differences in reservoir imbibition oil production capacity obtained from rock samples of different sizes, which brings great challenges to the efficient development of tight oil reservoirs. To clarify the law and mechanism of the rock sample size effect of tight core imbibition oil recovery, this paper takes the newly discovered tight sedimentary tuff (TST) oil reservoir as an example. First, several representative real cores were collected. Then, their wettability and pore structure characteristics were analyzed. Finally, physical simulation experiments of imbibition under different rock sample sizes were conducted. The results show that the TST has very favorable imbibition conditions, which are manifested in the following: (i) the wettability is weakly hydrophilic to hydrophilic; (ii) the mineral composition is tuffaceous minerals, calcite, and quartz, without clay minerals; (iii) micro-nanoscale pores are developed; and (iv) the pore throats are evenly distributed. In the imbibition experiments of rock samples of different sizes, the oil production characteristics of the core surface, the variation form of imbibition rate, pore production characteristics, and the influence mode of imbibition pressure on imbibition do not have the sample size effect. However, the RF of the spontaneous imbibition has an obvious sample size effect, and there is a good exponential function relationship between the imbibition RF and the specific surface area (SSA) of cores. The fundamental reason why the rock sample size effect of the TST imbibition oil recovery is relatively stable and has strong regularity is that its pore structure and wettability are relatively homogeneous and stable. The change of rock sample size does not have a great impact on the distribution of the core pore structure and wettability, resulting in no significant change in its imbibition power, resistance, and distance. Therefore, the main factor determining the imbibition RF of rock samples with different sizes is their SSA. The research results of this work can provide an important theoretical basis for understanding the law and mechanism of TST imbibition oil recovery and unifying the imbibition experimental results of small-sized rock samples.

5.
ACS Omega ; 6(41): 27170-27182, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693137

RESUMO

In order to cope with the global climate crisis, carbon capture, utilization, and storage are the key technologies to achieve carbon neutrality, and it is an elegant geological utilization method for the oil and gas industry to improve the recovery rate of crude oil by using CO2. However, in practical applications, the problem of low miscibility of CO2 and crude oil, resulting in low oil displacement efficiency, cannot be avoided. Thus, finding an appropriate method to increase the utilization rate of CO2 is a worth in-depth study. In light of this, this paper carries out the study on improving the CO2 flooding efficiency by using oil and gas amphiphilic surfactants. First of all, according to the molecular structure theory and the solubility experiment of surfactants in CO2, five kinds of surfactants and two kinds of additives with good performance of oil and gas were selected. Then, three experiments were conducted to explore the mechanism of the selected surfactants. The main mechanism of promoting the miscibility of CO2-crude oil is to reduce the interfacial tension of the oil and gas phases, followed by increasing the volume expansion of crude oil and reducing the viscosity of crude oil. Finally, through the slim tube displacement experiment, the oil displacement efficiency effect of adding the compound systems of SPO5/n-pentanol was simulated. The results show that the oil displacement efficiency is significantly higher than that of pure CO2 flooding, and the pressure of miscibility reduces at the same time. The selected reagents have a good effect of promoting miscibility. Therefore, this is an effective method to improve the geological utilization of CO2.

6.
ACS Omega ; 6(36): 23243-23261, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34549125

RESUMO

The pore structure and movable fluid characteristics of tight conglomerate reservoirs are complex, which are greatly different from conventional reservoirs. The depositional mechanism is the fundamental factor controlling the physical properties of conglomerate reservoirs. However, there is a lack of systematic research on the pore structure and movable fluid characteristics of conglomerate reservoirs with typical sedimentary facies. This paper investigates the pore structure and movable fluid characteristics of conglomerate of different sedimentary facies based on various experiments. Casting thin sections, X-ray diffraction, scanning electron microscopy, high-pressure mercury injection, and nuclear magnetic resonance experiments were conducted on 32 conglomerates samples from the Mahu Sag, Junggar Basin, China. The quality classification method of tight conglomerate reservoirs is established. The results show that the conglomerate can be divided into three sedimentary facies; traction flow conglomerate (TFC) and pebbled sandstone (PSS) mainly develop intergranular pores and dissolved pores; and the pore diameter curves are mainly a double peak, single peak, and flat peak. Gravity flow conglomerate (GFC) mainly develops dissolved pores and interstitial micropores, and the pore diameter curve is mainly a single peak. PSS includes pebbled gritty sandstone (P(G)SS) and pebbled fine sandstone (P(F)SS). TFC and P(G)SS are favorable class I reservoirs, while GFC and P(F)SS are nonfavorable class II reservoirs. A new parameter, the ratio of the major axis to the minor axis of the pore outer ellipse (axial ratio), is proposed to quantitatively describe the compaction effect. The average axial ratios of the three lithofacies are 3.04, 3.98, and 8.78, respectively, indicating that the compaction is intensified and the pore structure becomes worse. By analyzing the correlation between pore structure parameters and permeability, it is found that the main controlling factors of permeability of GFC and TFC are sorting and connectivity, respectively, and the main flow radius is the most suitable parameter to describe permeability. A linear spectral decomposition method was used to establish a new quantitative calculation method of movable fluid saturation for different types of pores, and the results show that the movable fluid saturation of intergranular pores is the highest (average: 65.43%), and the movable fluid saturation of TFC and P(G)SS with more intergranular pores is the highest. Movable fluid saturation is inversely proportional to the content of I/S and the compaction rate and positively proportional to the content of quartz and feldspar and the cementation rate. The fluid mobility of water-wet samples is weaker. The research results provide theoretical support for the identification of favorable reservoirs and the cognition of a development mechanism.

7.
Oncotarget ; 9(23): 16418-16426, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29662655

RESUMO

BACKGROUND: Pulmonary tuberculosis (PTB) is an infectious disease with a high incidence worldwide. Genes encoding cytokines IL4, IL6, and IL10 are highly polymorphic and can influence the susceptibility to PTB. RESULTS: We found correlations between one SNP in IL6 (rs2069837 p = 6.63E-11), seven SNPs in IL10 (rs1554286 p = 6.87E-20, rs1518111 p = 6.11E-11, rs3021094 p = 6.75E-29, rs3790622 p = 2.40E-06, rs3024490 p = 6.73E-11, rs1800872 p = 6.18E-11, rs1800871 p = 6.73E-11) and incidences of PTB. The SNPs rs2069837, rs1554286, rs1518111, rs3024490, rs1800872, and rs1800871 increased PTB risk by 1.95-fold, 2.34-fold, 1.84-fold, 1.84-fold, 1.84-fold and 1.84-fold, respectively. The SNPs rs3021094 and rs3790622 decreased PTB risk by 0.33-fold and 0.38-fold, respectively. We also found two linkage disequilibrium blocks in the studied IL SNPs. The IL4 haplotype TCCCGGA (OR = 1.33, p = 0.014) increased PTB risk, the IL10 haplotypes ATGGATA (OR = 0.39, p = 4.84E-06) provided a protective effect and decreased PTB risk. MATERIALS AND METHODS: For this study, we recruited 467 subjects with PTB and 503 healthy subjects from a Tibetan population living in Lhasa and nearby, China. Association analyses of sixteen single-nucleotide polymorphisms (SNPs) in IL4, IL6, and IL10 were performed. CONCLUSIONS: Our findings demonstrate an association between polymorphisms in IL6 and IL10 and risk of PTB.

8.
Environ Sci Technol ; 47(17): 10071-7, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23915233

RESUMO

CO2 sequestration has been considered to be one of the most straightforward carbon management strategies for industrial CO2 emission. Monitoring of the CO2 injection process is one of the best ways to make sure the safety storage but is also a major challenge in CO2 geological sequestration. Previous field and laboratory researches have shown that seismic methods are among the most promising monitoring methods because of the obvious reduction in P-wave velocities caused by CO2 injection. However, as CO2 injection continues, the P-wave velocity becomes increasingly insensitive according to the pilot projects when CO2 saturation is higher than 20-40%. Therefore, the conventional seismic method needs improvement or replacement to solve its limitations. In this study, P-wave velocity and amplitude responses to supercritical CO2 injection in brine-saturated core samples from Jilin oilfield were tested using core displacement and an ultrasonic detection integrated system. Results showed that neither the P-wave velocity nor amplitude could simply be used to monitor the CO2 injection process because of the insensitive or nonmonotonous response. Consequently, a new index was established by synthetically considering these two parameters to invert and monitor the CO2 process, which can be thought of as a newer and more effective assessment criterion for the seismic method.


Assuntos
Dióxido de Carbono/análise , Sequestro de Carbono , Monitoramento Ambiental/métodos , Geologia/métodos , China , Monitoramento Ambiental/instrumentação , Recuperação e Remediação Ambiental , Geologia/instrumentação , Campos de Petróleo e Gás , Sais , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA