Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(13): 17301-17308, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951713

RESUMO

The electret has drawn considerable attention as an emerging flexible energy collector. In this work, a charged microcapsule is designed which can provide a stable storage space for electric charge in the electret. The flexoelectric-like response is achieved by embedding a layer of charged microcapsules in the middle plane of the flexible polymer to form an electret. The results of Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy verified the successful preparation of microcapsules. Zeta potential analysis showed the negative electrical properties of the microcapsules. The prepared microcapsule electret has a significant flexoelectric effect under loading conditions. This work presents a preliminary theoretical study of the microcapsule electret to optimize the output characteristics of the electret by varying the parameters, including the number of microcapsules, the size of the electret, and the external load. Good agreement was achieved with the experimental results, which verified the validity of the theoretical study. This work provides a new method for preparing electret and further promotes its application in electromechanical transducers.

2.
Micromachines (Basel) ; 12(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34683238

RESUMO

Soft dielectric elastomers can quickly achieve large deformations when they are subjected to electromechanical loads. They are widely used to fabricate a number of soft functional devices. However, the functions of soft devices are limited to the failure modes of soft dielectric elastomers. In this paper, we use graded dielectric elastomers to produce a soft energy harvester with a strong ability of energy harvesting. Compared to the conventional energy harvester with homogeneous dielectric films, our new energy harvester is made of graded elastomers and can increase both the specific energy from 2.70 J/g to 2.93 J/g and the maximum energy from 6.3 J/g to 8.6 J/g by just using a stiffer outer radius. By optimizing the material parameters in graded dielectric films, the soft energy harvester can reach better performance, and our results can provide guidance for designing powerful energy harvesters.

3.
Phys Rev E ; 102(2-1): 023007, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32942460

RESUMO

Subject to an applied electric field, soft dielectrics with intrinsic low moduli can easily achieve a large deformation through the so-called electrostatic Maxwell stress. Meanwhile, the highly nonlinear electromechanical coupling between the mechanical and electric loads in soft dielectrics gives a variety of failure modes, especially pull-in instability. These failure modes make the application of soft dielectrics highly limited. In this paper, we investigate the large deformation, pull-in instability, and electroactuation of a graded circular dielectric plate subject to the in-plane mechanical load and the applied electric load in the thickness direction. The results obtained herein cover, as special cases, the electromechanical behaviors of homogeneous dielectrics. There is a universal physical intuition that stiffer dielectrics can sustain higher electromechanical loads for pull-in instability but achieve less deformation, and vice versa. We show this physical intuition theoretically in different homogeneous dielectrics and graded dielectrics. Interestingly, we find that the ability to sustain a high electric field or a large deformation in a stiff or soft homogeneous circular dielectric plate can be achieved by just using a graded circular dielectric plate. We only have to partly change the modulus of a circular plate, with a stiff or soft outer region. The change makes the same electromechanical behavior as that of a homogeneous dielectric, even increases the maximum electroactuation stretch from 1.26 to 1.5. This sheds light on the effects of the material inhomogeneity on the design of advanced dielectric devices including actuators and energy harvestors.

4.
Oncol Lett ; 18(3): 3367-3372, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31452816

RESUMO

Abnormal expression of microRNA (miR)-21 has been reported in various types of cancers. However, the role and mechanism of miR-21 remain to be elucidated in acute myeloid leukemia (AML). In the present study, it was observed that miR-21 was upregulated and Krüppel-like factor 5 (KLF5) was downregulated in AML cells compared with normal bone marrow cells. Dual luciferase reporter assays revealed that KLF5 was a direct target of miR-21. Indeed, miR-21 overexpression resulted in a downregulation of KLF5 expression, while miR-21 inhibition had the opposite effect in AML cells. In addition, miR-21 overexpression promoted the proliferation of AML cells in vitro. Notably, using a mouse xenograft model, miR-21 overexpression was demonstrated to result in enhanced tumor growth and suppressed KLF5 expression in the xenograft tumors in vivo. In conclusion, the present results indicated that miR-21 promoted proliferation through directly regulating KLF5 expression in AML cells. miR-21 may thus serve as an oncogene in AML, providing a potential target for AML therapy.

5.
Soft Matter ; 15(1): 127-148, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30539952

RESUMO

Soft materials that exhibit electromechanical coupling are an important element in the development of soft robotics, flexible and stretchable electronics, energy harvesters, sensor and actuators. Truly soft natural piezoelectrics essentially do not exist and typical dielectric elastomers, predicated on electrostriction and the Maxwell stress effect, exhibit only a one-way electromechanical coupling. Extensive research however has shown that soft electrets i.e. materials with embedded immobile charges and dipoles, can be artificially engineered to exhibit a rather large piezoelectric-like effect. Unfortunately, this piezoelectric effect-large as it may be-is primarily restricted to an electromechanical coupling in the longitudinal direction or what is referred colloquially as the d33 piezoelectric coefficient. In sharp contrast, the transverse piezoelectric property (the so-called d31 coefficient) is rather small. This distinction has profound implications since these soft electrets exhibit negligible electromechanical coupling under bending deformation. As a result, the typically engineered soft electrets are rendered substantively ill-suited for energy harvesting as well as actuation/sensing of flexure motion that plays a critical role in applications like soft robotics. In this work, we analyze nonlinear bending deformation of a soft electret structure and examine the precise conditions that may lead to a strong emergent piezoelectric response under bending. Furthermore, we show that non-uniformly distributed dipoles and charges in the soft electrets lead to an apparent electromechanical response that may be ambiguously and interchangeably interpreted as either transverse piezoelectricity or flexoelectricity. We suggest pragmatic routes to engineer a large transverse piezoelectric (d31) and flexoelectric coefficient in soft electrets. Finally, we show that in an appropriately designed soft electret, even a uniform external electric field can induce curvature in the structure thus enabling its application as a bending actuator.

6.
Soft Matter ; 14(28): 5856-5868, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29947636

RESUMO

Magnetoelectric materials that convert magnetic fields into electricity and vice versa are rare and usually complex, hard crystalline alloys. Recent work has shown that soft, highly deformable magnetoelectric materials may be created by using a strain-mediated mechanism. The electromagnetic and elastic deformation of such materials is intricately coupled, giving rise to a rather rich instability and bifurcation behavior that may limit or otherwise put bounds on the emergent magnetoelectric behavior. In this work, we investigate the magneto-electro-mechanical instability of a soft dielectric film subject to mechanical forces and external electric and magnetic fields. We explore the interplay between mechanical strain, electric voltage and magnetic fields and their impact on the maximum voltage and the stretch the dielectric material can reach. Specifically, we present physical insights to support the prospects to achieve wireless energy harvesting through remotely applied magnetic fields.

7.
Medicine (Baltimore) ; 97(22): e10775, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29851783

RESUMO

Alzheimer disease (AD) is a progressive neurodegenerative disease, the etiology of which remains largely unknown. Accumulating evidence indicates that elevated manganese (Mn) in brain exerts toxic effects on neurons and contributes to AD development. Thus, we aimed to explore the gene and pathway variations through analysis of high through-put data in this process.To screen the differentially expressed genes (DEGs) that may play critical roles in Mn-induced AD, public microarray data regarding Mn-treated neurocytes versus controls (GSE70845), and AD versus controls (GSE48350), were downloaded and the DEGs were screened out, respectively. The intersection of the DEGs of each datasets was obtained by using Venn analysis. Then, gene ontology (GO) function analysis and KEGG pathway analysis were carried out. For screening hub genes, protein-protein interaction network was constructed. At last, DEGs were analyzed in Connectivity Map (CMAP) for identification of small molecules that overcome Mn-induced neurotoxicity or AD development.The intersection of the DEGs obtained 140 upregulated and 267 downregulated genes. The top 5 items of biological processes of GO analysis were taxis, chemotaxis, cell-cell signaling, regulation of cellular physiological process, and response to wounding. The top 5 items of KEGG pathway analysis were cytokine-cytokine receptor interaction, apoptosis, oxidative phosphorylation, Toll-like receptor signaling pathway, and insulin signaling pathway. Afterwards, several hub genes such as INSR, VEGFA, PRKACB, DLG4, and BCL2 that might play key roles in Mn-induced AD were further screened out. Interestingly, tyrphostin AG-825, an inhibitor of tyrosine phosphorylation, was predicted to be a potential agent for overcoming Mn-induced neurotoxicity or AD development.The present study provided a novel insight into the molecular mechanisms of Mn-induced neurotoxicity or AD development and screened out several small molecular candidates that might be critical for Mn neurotoxicity prevention and Mn-induced AD treatment.


Assuntos
Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/genética , Biologia Computacional/métodos , Manganês/toxicidade , Benzotiazóis/metabolismo , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Ensaios de Triagem em Larga Escala/métodos , Humanos , Manganês/metabolismo , Intoxicação por Manganês/metabolismo , Intoxicação por Manganês/prevenção & controle , Fosforilação/genética , Mapas de Interação de Proteínas/genética , Transdução de Sinais/genética , Tirfostinas/metabolismo , Regulação para Cima/genética
8.
Soft Matter ; 13(26): 4552-4558, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28628169

RESUMO

Pull-in instability often occurs when a film of a dielectric elastomer is subjected to an electric field. In this work, we concoct a set of simple, experimentally implementable, conditions that render the dielectric elastomer film impervious to pull-in instability for all practical loading conditions. We show that a uniaxially pre-stretched film has a significantly large actuation stretch in the direction perpendicular to the pre-stretch and find that the maximal specific energy of a dielectric elastomer generator can be increased from 6.3 J g-1 to 8.3 J g-1 by avoiding the pull-in instability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...