Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 738: 101-10, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24726874

RESUMO

Obesity has become a major public health problem of global significance. Today, aspirin remains the most commonly used medication for the treatment of pyrexia, pain, inflammation and antiplatelet. The present study aims at evaluating the possible existence of a putative p53-dependent pathway underlying the aspirin-induced inhibition of adipogenesis. Cell migration assay was identified by the ability to migrate through Transwell insert. Oil Red O staining was employed to quantify adipose accumulation. The concentration of glucose and triglyceride were measured by using assay kits. The expression levels of several master regulatory molecules controlling various signal pathways were monitored using the immunoblotting techniques. Aspirin significantly inhibited preadipocyte migration and adipose accumulation. The p53-p21 signaling and the expression of differentiation marker glycerol-3-phosphate dehydrogenase were increased in a dose-dependent manner. It indicated that aspirin induced adipocyte differentiation through p53-p21 pathway. The oncogenic ERK 1/2 MAPK signaling was induced, whereas, the expression of adipogenic markers peroxisome proliferator-activated receptor γ (PPARγ), adipocyte fatty acid-binding protein (A-FABP) and inflammatory factors cyclooxygenase-2 (Cox-2), tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) were inhibited. Aspirin negatively regulated the pentose phosphate pathway (PPP) by inhibiting the expression of rate-limiting enzyme glucose-6-phosphate dehydrogenase. Knockdown the expression of oncogenic ERK 1/2 MAPK by using 10 µM PD98059 significantly increased triglyceride synthesis, adipose accumulation and activated PPP, however, decreased glucose uptake. Diverted the glucose flux to PPP, rather than increased glucose uptake, was associated with adipogenesis. Down-regulated the expression of tumor suppressor p53 by 10 µM pifithrin-α (PFTα) alone had no effect on adipose accumulation. However, administration of aspirin accompanied with PFTα abolished aspirin-induced inhibition of adipogenesis. We demonstrated that aspirin-induced inhibition of adipogenesis was p53-dependent and associated with inactivation of PPP. Blockade PPP may be a novel strategy for obesity prevention and therapy. Moreover, when use aspirin in therapeutic strategy, the p53 status should be considered.


Assuntos
Adipogenia/efeitos dos fármacos , Aspirina/farmacologia , Via de Pentose Fosfato/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Movimento Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/deficiência , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/deficiência , Proteína Quinase 3 Ativada por Mitógeno/genética
2.
Phytother Res ; 27(8): 1154-61, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22976055

RESUMO

Vitexin, identified as apigenin-8-C-D-glucopyranoside, a natural flavonoid compound found in certain herbs such as hawthorn herb, has been reported to exhibit anti-oxidative, anti-inflammatory, anti-metastatic and antitumor properties. The aim of this study was to investigate the possible existence of p53-dependent pathway underlying vitexin-induced metastasis and apoptosis in human oral cancer cells, OC2 cells. Vitexin decreased cell viability significantly. Meanwhile, the expression of tumor suppressor p53 and a small group of its downstream genes, p21(WAF1) and Bax, were upregulated. The p53 inhibitor pifithrin-α (PFT-α) knockdown of the signaling of p53 led vitexin to lose its antitumor effect and inhibited the expression of p53 downstream genes, p2(WAF1) and Bax. Vitexin had anti-metastatic potential accompanied with increasing plasminogen activator inhibitor 1 (PAI-1) accumulation and decreasing matrix metalloproteinase-2 expression. Our present study evidenced, by using p53 inhibitor PFT-α, PAI-1 and peroxisome proliferator-activated receptor γ are downstream genes of p53 in vitexin-induced signaling. MAPK inhibitor PD98059 decreased the OC2 cells viability significantly. The expression of p53 and its downstream genes p21(WAF1) and Bax were enhanced by blocking the activation of p42/p44 MAPK in response to treatment with vitexin. Moreover, p42/p44 MAPK played a negative role in p53-dependent metastasis and apoptosis. We give evidence for the first time that the novel p53-dependent metastatic and apoptotic pathway induced by vitexin in human oral cancer OC2 cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apigenina/farmacologia , Neoplasias Bucais/patologia , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Flavonoides/farmacologia , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Neoplasias Bucais/genética , PPAR gama/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tolueno/análogos & derivados , Tolueno/farmacologia , Regulação para Cima , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...