Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aesthetic Plast Surg ; 40(3): 435-45, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27125546

RESUMO

BACKGROUND: Capsular contracture is the most common complication of breast augmentation. Although numerous procedures are intended to prevent capsular contracture, their efficacy does not satisfy surgeons or patients. In the present study, we used shock waves to develop innovative protocols to treat capsular contracture in rabbits. METHODS: We used shock waves to treat capsular contracture in a rabbit model. Six clinical parameters were evaluated to determine the treatment efficacy of shock waves on the pathological histology of capsular contracture. Dual-flip-angle T1-mapping magnetic resonance imaging was used to confirm the pathological findings. RESULTS: Among the parameters, myxoid change, vascular proliferation, and lymphoplasma cell infiltration around the capsule increased more after treatment than they did in a control group. Capsular thickness, inner thinner collagen layer, and capsule wall collagen deposition decreased after shock wave treatment; only the inner thinner collagen layer and capsule wall collagen deposition changed significantly. The MRI findings for both scar thickness and water content were consistent with pathological biology findings. CONCLUSION: This was the first pilot study and trial to treat capsular contractures using shock waves. We found that shock waves can cause changes in the structure or the composition of capsular contracture. We conclude that the treatment could decrease water content, loosen structure, decrease collagen deposition, and might alleviate scar formation from capsular contracture. We believe that the treatment could be a viable remedy for capsular contractures. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Implantes de Mama/efeitos adversos , Ondas de Choque de Alta Energia/uso terapêutico , Contratura Capsular em Implantes/diagnóstico por imagem , Contratura Capsular em Implantes/terapia , Imageamento por Ressonância Magnética/métodos , Animais , Biópsia por Agulha , Modelos Animais de Doenças , Feminino , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Contratura Capsular em Implantes/patologia , Mamoplastia/efeitos adversos , Mamoplastia/métodos , Glândulas Mamárias Animais , Projetos Piloto , Coelhos , Distribuição Aleatória , Valores de Referência , Sensibilidade e Especificidade
2.
Nanoscale ; 7(37): 15362-73, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26332120

RESUMO

Large-scale production of uniform and high-quality graphene is required for practical applications of graphene. The electrochemical exfoliation method is considered as a promising approach for the practical production of graphene. However, the relatively low production rate of graphene currently hinders its usage. Here, we demonstrate, for the first time, a rapid and high-yield approach to exfoliate graphite into graphene sheets via an electrochemical method with small molecular additives; where in this approach, the use of melamine additives is able to efficiently exfoliate graphite into high-quality graphene sheets. The exfoliation yield can be increased up to 25 wt% with melamine additives compared to electrochemical exfoliation without such additives in the electrolyte. The proposed mechanism for this improvement in the yield is the melamine-induced hydrophilic force from the basal plane; this force facilitates exfoliation and provides in situ protection of the graphene flake surface against further oxidation, leading to high-yield production of graphene of larger crystallite size. The residual melamine can be easily washed away by water after collection of the graphene. The exfoliation with molecular additives exhibits higher uniformity (over 80% is graphene of less than 3 layers), lower oxidation density (C/O ratio of 26.17), and low defect level (D/G < 0.45), which are characteristics superior to those of reduced graphene oxide (rGO) or of a previously reported approach of electrochemical exfoliated graphene (EC-graphene). The continuous films obtained by the purified graphene suspension exhibit a sheet resistance of 13.5 kΩ â–¡(-1) at ∼95% transmittance. A graphene-based nanocomposite with polyvinyl butyral (PVB) exhibits an electrical conductivity of 3.3 × 10(-3) S m(-1) for the graphene loading fraction of 0.46 vol%. Moreover, the melamine functionalized graphene sheets are readily dispersed in the aqueous solution during the exfoliation process, allowing for the production of graphene in a continuous process. The continuous process for producing graphene was demonstrated, with a yield rate of 1.5 g h(-1). The proposed method can produce high-crystallinity graphene in a fast and high-yield manner, which paves the path towards mass production of high-quality graphene for a variety of applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...