Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 875: 162601, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36882141

RESUMO

Accurate modeling of Gross Primary Productivity (GPP) in terrestrial ecosystems is a major challenge in quantifying the carbon cycle. Many light use efficiency (LUE) models have been developed, but the variables and algorithms used for environmental constraints in different models vary importantly. It is still unclear whether the models can be further improved by machine learning methods and the combination of different variables. Here, we have developed a series of RFR-LUE models, which used the random forest regression (RFR) algorithm based on variables of LUE models, to explore the potential of estimating site-level GPP. Based on remote sensing indices, eddy covariance and meteorological data, we applied RFR-LUE models to evaluate the effects of different variables combined on GPP on daily, 8-day, 16-day and monthly scales, respectively. Cross-validation analyses revealed performances of RFR-LUE models varied significantly among sites with R2 of 0.52-0.97. Slopes of the regression relationship between simulated and observed GPP ranged from 0.59 to 0.95. Most models performed better in capturing the temporal changes and magnitude of GPP in mixed forests and evergreen needle-leaf forests than in evergreen broadleaf forests and grasslands. Performances were improved at the longer temporal scale, with the average R2 for four-time resolutions of 0.81, 0.87, 0.88, and 0.90, respectively. Additionally, the importance of the variables showed that temperature and vegetation indices were critical variables for RFR-LUE models, followed by radiation and moisture variables. The importance of moisture variables was higher in non-forests than in forests. A comparison with four GPP products indicated that RFR-LUE model predicted GPP better matcher observed GPP across sites. The study provided an approach to deriving GPP fluxes and evaluating the extent to which variables affect GPP estimation. It may be used for predicting vegetation GPP at the regional scales and for calibration and evaluation of land surface process models.

2.
Medicine (Baltimore) ; 100(5): e23925, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33592845

RESUMO

ABSTRACT: The World Health Organization (WHO) classified the spread of COVID-19 (Coronavirus Disease 2019) as a global pandemic in March. Scholars predict that the pandemic will continue into the coming winter and will become a seasonal epidemic in the following year. Therefore, the identification of effective control measures becomes extremely important. Although many reports have been published since the COVID-19 outbreak, no studies have identified the relative effectiveness of a combination of control measures implemented in Wuhan and other areas in China. To this end, a retrospective analysis by the collection and modeling of an unprecedented number of epidemiology records in China of the early stage of the outbreaks can be valuable.In this study, we developed a new dynamic model to describe the spread of COVID-19 and to quantify the effectiveness of control measures. The transmission rate, daily close contacts, and the average time from onset to isolation were identified as crucial factors in viral spreading. Moreover, the capacity of a local health-care system is identified as a threshold to control an outbreak in its early stage. We took these factors as controlling parameters in our model. The parameters are estimated based on epidemiological reports from national and local Center for Disease Control (CDCs).A retrospective simulation showed the effectiveness of combinations of 4 major control measures implemented in Wuhan: hospital isolation, social distancing, self-protection by wearing masks, and extensive medical testing. Further analysis indicated critical intervention conditions and times required to control an outbreak in the early stage. Our simulations showed that South Korea has kept the spread of COVID-19 at a low level through extensive medical testing. Furthermore, a predictive simulation for Italy indicated that Italy would contain the outbreak in late May under strict social distancing.In our general analysis, no single measure could contain a COVID-19 outbreak once a health-care system is overloaded. Extensive medical testing could keep viral spreading at a low level. Wearing masks functions as favorably as social distancing but with much lower socioeconomic costs.


Assuntos
COVID-19 , Controle de Doenças Transmissíveis , Hospitalização/estatística & dados numéricos , Respiradores N95/estatística & dados numéricos , Avaliação de Resultados em Cuidados de Saúde/métodos , Distanciamento Físico , SARS-CoV-2/isolamento & purificação , COVID-19/economia , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/terapia , China/epidemiologia , Controle de Doenças Transmissíveis/métodos , Controle de Doenças Transmissíveis/organização & administração , Controle de Doenças Transmissíveis/normas , Busca de Comunicante/estatística & dados numéricos , Transmissão de Doença Infecciosa/prevenção & controle , Transmissão de Doença Infecciosa/estatística & dados numéricos , Humanos , Modelos Teóricos , Mortalidade , Análise de Sistemas , Tempo para o Tratamento/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...