Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Nutr ; 126(11): 1601-1610, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33504374

RESUMO

In present study, we explored the effects and the underlying mechanisms of phospholipase C (PLC) mediating glucose-induced changes in intestinal glucose transport and lipid metabolism by using U-73122 (a PLC inhibitor). We found that glucose incubation activated the PLC signal and U-73122 pre-incubation alleviated the glucose-induced increase in plcb2, plce1 and plcg1 mRNA expression. Meanwhile, U-73122 pre-treatment blunted the glucose-induced increase in sodium/glucose co-transporters 1/2 mRNA and protein expressions. U-73122 pre-treatment alleviated the glucose-induced increase in TAG content, BODIPY 493/503 fluorescence intensity, lipogenic enzymes (glucose 6-phospate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), malic enzyme and fatty acid synthase (FAS)) activity and the mRNA expressions of lipogenic genes and related transcription factors (6pgd, g6pd, fas, acca, srebp1 and carbohydrate response element-binding protein (chrebp)) in intestinal epithelial cells of yellow catfish. Further research found that U-73122 pre-incubation mitigated the glucose-induced increase in the ChREBP protein expression and the acetylation level of ChREBP in HEK293T cells. Taken together, these data demonstrated that the PLC played a major role in the glucose-induced changes of glucose transport and lipid metabolism and provide a new perspective for revealing the molecular mechanism of glucose-induced changes of intestinal glucose absorption, lipid deposition and metabolism.


Assuntos
Peixes-Gato , Células Epiteliais , Glucose , Metabolismo dos Lipídeos , Fosfolipases Tipo C , Animais , Peixes-Gato/metabolismo , Células Epiteliais/metabolismo , Glucose/metabolismo , Células HEK293 , Humanos , Fígado/metabolismo , Fosfolipases Tipo C/metabolismo
2.
Br J Nutr ; 124(12): 1241-1250, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-32600495

RESUMO

Dysregulation in hepatic lipid synthesis by excess dietary carbohydrate intake is often relevant with the occurrence of fatty liver; therefore, the thorough understanding of the regulation of lipid deposition and metabolism seems crucial to search for potential regulatory targets. In the present study, we examined TAG accumulation, lipid metabolism-related gene expression, the enzyme activities of lipogenesis-related enzymes, the protein levels of transcription factors or genes involving lipogenesis in the livers of yellow catfish fed five dietary carbohydrate sources, such as glucose, maize starch, sucrose, potato starch and dextrin, respectively. Generally speaking, compared with other carbohydrate sources, dietary glucose promoted TAG accumulation, up-regulated lipogenic enzyme activities and gene expressions, and down-regulated mRNA expression of genes involved in lipolysis and small ubiquitin-related modifier (SUMO) modification pathways. Further studies found that sterol regulatory element binding protein 1 (SREBP1), a key transcriptional factor relevant to lipogenic regulation, was modified by SUMO1. Mutational analyses found two important sites for SUMOylation modification (K254R and K264R) in SREBP1. Mutant SREBP lacking lysine 264 up-regulated the transactivation capacity on an SREBP-responsive promoter. Glucose reduced the SUMOylation level of SREBP1 and promoted the protein expression of SREBP1 and its target gene stearoyl-CoA desaturase 1 (SCD1), indicating that SUMOylation of SREBP1 mediated glucose-induced hepatic lipid metabolism. Our study elucidated the molecular mechanism of dietary glucose increasing hepatic lipid deposition and found that the SREBP-dependent transactivation was regulated by SUMO1 modification, which served as a new target for the transcriptional programmes governing lipid metabolism.


Assuntos
Carboidratos da Dieta/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação/efeitos dos fármacos , Animais , Peixes-Gato , Dieta/métodos , Regulação para Baixo/efeitos dos fármacos , Fígado/metabolismo , RNA Mensageiro/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
3.
J Nutr ; 150(7): 1790-1798, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470978

RESUMO

BACKGROUND: Dietary carbohydrate affects intestinal glucose absorption and lipid deposition, but the underlying mechanisms are unknown. OBJECTIVES: We used yellow catfish and their isolated intestinal epithelial cells (IECs) to test the hypothesis that sodium/glucose cotransporters (SGLTs) 1/2 and acetylated carbohydrate response element binding protein (ChREBP) mediated glucose-induced changes in glucose absorption and lipid metabolism. METHODS: Yellow catfish (mean ± SEM weight: 4.68 ± 0.02 g, 3 mo old, mixed sex) were fed diets containing 250 g carbohydrates/kg from glucose (G, control), corn starch (CS), sucrose (S), potato starch (PS), or dextrin (D) for 10 wk. IECs were isolated from different yellow catfish and incubated for 24 h in a control or glucose (15 mM) solution with or without a 2-h pretreatment with an inhibitor [sotagliflozin (LX-4211) or tubastatin A (TBSA)]. Human embryonic kidney cells (HEK293T cells) were transfected with a Flag-ChREBP plasmid to explore ChREBP acetylation. Triglyceride (TG) and glucose concentrations and enzymatic activities were measured in the intestine and IECs of yellow catfish. They also were subjected to immunofluorescence, immunoprecipitation, qPCR, and immunoblotting. Immunoblotting and immunoprecipitation were performed with HEK293T cells. RESULTS: The G group had greater intestine TGs (0.99- to 2.30-fold); activities of glucose 6-phospate dehydrogenase, 6-phosphogluconate dehydrogenase, and isocitrate dehydrogenase (0.12- to 2.10-fold); and expression of lipogenic genes (0.32- to 2.34-fold) than the CS, PS, and D groups. The G group had greater intestine sglt1/2 mRNA and protein expression than the CS, S and D groups (0.35- to 1.12-fold and 0.40- to 4.67-fold, respectively), but lower mRNA amounts of lipolytic genes (48.6%-65.8%) than the CS and PS groups. LX-4211 alleviated the glucose-induced increase in sglt1/2 mRNA (38.2%-47.4%) and SGLT1 protein (48.0%) expression, TGs (29.3%), and lipogenic enzyme activities (27.7%-42.1%) and gene expression (38.0%-55.5%) in the IECs. TBSA promoted the glucose-induced increase in TGs (11.3%), fatty acid synthase activity (32.6%), and lipogenic gene expression (21.6%-34.4%) in the IECs and acetylated ChREBP (10.5%) in HEK293T cells. CONCLUSIONS: SGLT1/2 signaling and acetylated ChREBP mediated glucose-induced changes in glucose absorption and lipid metabolism in the intestine and IECs of yellow catfish.


Assuntos
Peixes-Gato/fisiologia , Dieta/veterinária , Glucose/administração & dosagem , Mucosa Intestinal/efeitos dos fármacos , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Transporte Biológico , Glicemia , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Metabolismo dos Lipídeos , Transdução de Sinais , Transportador 1 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/genética , Triglicerídeos
4.
Environ Pollut ; 263(Pt B): 114420, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32244122

RESUMO

Lipid metabolism could be used as a biomarker for environmental monitoring of metal pollution, including Cu. Given the potential role of the Wnt/ß-catenin signaling pathway and acetylation in lipid metabolism, the aim of this study was to investigate the mechanism of Wnt signaling and acetylation mediating Cu-induced lipogenesis. Grass carp Ctenopharyngodon idella, widely distributed freshwater teleost, were used as the model. We found that waterborne Cu exposure increased the accumulation of Cu and lipid, up-regulated lipogenesis, suppressed Wnt signaling, reduced ß-catenin protein level and its nuclear location, reduced the sirt1 mRNA levels and up-regulated the ß-catenin acetylation level. Further investigation found that Cu up-regulated lipogenesis through Wnt/ß-catenin pathway; Cu regulated the ß-catenin acetylation, and K311 was the key acetylated residue after Cu incubation. SIRT1 mediated Cu-induced changes of acetylated ß-catenin and played an essential role in nuclear accumulation of ß-catenin and Cu-induced lipogenesis. Cu facilitated lipid accumulation via the regulation of Wnt pathway by SIRT1. For the first time, our study uncovered the novel mechanism for Wnt/ß-catenin pathway and ß-catenin acetylation levels mediating Cu-induced lipid deposition, which provided insights into the association between Cu exposure and lipid metabolism in fish and had important environmental implications for monitoring metal pollution in the water by using new biomarkers involved in lipid metabolism.


Assuntos
Carpas , beta Catenina , Acetilação , Animais , Lipídeos , Lipogênese , Via de Sinalização Wnt
5.
Genes (Basel) ; 10(10)2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557940

RESUMO

The autophagy-lysosome pathway, which involves many crucial genes and proteins, plays crucial roles in the maintenance of intracellular homeostasis by the degradation of damaged components. At present, some of these genes and proteins have been identified but their specific functions are largely unknown. This study was performed to clone and characterize the full-length cDNA sequences of nine key autolysosome-related genes (vps11, vps16, vps18, vps33b, vps41, lamp1, mcoln1, ctsd1 and tfeb) from yellow catfish Pelteobagrus fulvidraco. The expression of these genes and the transcriptional responses to a high-fat diet and fatty acids (FAs) (palmitic acid (PA) and oleic acid (OA)) were investigated. The mRNAs of these genes could be detected in heart, liver, muscle, spleen, brain, mesenteric adipose tissue, intestine, kidney and ovary, but varied with the tissues. In the liver, the mRNA levels of the nine autolysosome-related genes were lower in fish fed a high-fat diet than those fed the control, indicating that a high-fat diet inhibited formation of autolysosomes. Palmitic acid (a saturated FA) significantly inhibited the formation of autolysosomes at 12 h, 24 h and 48 h incubation. In contrast, oleic acid (an unsaturated FA) significantly induced the formation of autolysosomes at 12 h, but inhibited them at 24 h. At 48 h, the effects of OA incubation on autolysosomes were OA concentration-dependent in primary hepatocytes of P. fulvidraco. The results of flow cytometry and laser confocal observations confirmed these results. PA and OA incubation also increased intracellular non-esterified fatty acid (NEFA) concentration at 12 h, 24 h and 48 h, and influenced mRNA levels of fatty acid binding protein (fabp) and fatty acid transport protein 4 (fatp4) which facilitate FA transport in primary hepatocytes of P. fulvidraco. The present study demonstrated the molecular characterization of the nine autolysosome-related genes and their transcriptional responses to fat and FAs in fish, which provides the basis for further exploring their regulatory mechanism in vertebrates.


Assuntos
Autofagossomos/metabolismo , Peixes-Gato/metabolismo , Gorduras na Dieta/farmacologia , Ácidos Graxos/farmacologia , Fígado/metabolismo , Lisossomos/metabolismo , Animais , Gorduras na Dieta/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Fígado/efeitos dos fármacos , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
Front Physiol ; 9: 1544, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30467482

RESUMO

SUMOylation is a kind of important post-translational modification. In the present study, we identified 10 key genes involved in SUMOylation and deSUMOylation (sumo1, sumo2, sumo3, sae1, uba2, ubc9, pias1, senp1, senp2, and senp3) in yellow catfish Pelteobagrus fulvidraco, investigated their tissue expression patterns and transcriptional responses to carbohydrate addition both in vivo and in vitro. All of these members shared similar domains to their orthologous genes of other vertebrates. Their mRNAs were widely expressed in all the tested tissues, but at variable levels. Dietary carbohydrate levels differentially influenced the mRNA levels of these genes in liver, muscle, testis, and ovary of yellow catfish. Their mRNA levels in primary hepatocytes were differentially responsive to glucose addition. Our study would contribute to our understanding into the molecular basis of SUMOylation modification and into the potential SUMOylation function in the carbohydrate utilization in fish.

7.
Dalton Trans ; 43(28): 10809-15, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24882526

RESUMO

Four cobalt(II) porphyrins, two of which contain a ß-pyrrole nitro substituent, were synthesized and characterized by electrochemistry and spectroelectrochemistry. The investigated compounds are represented as (TRPP)Co and (NO2TRPP)Co, where TRPP is the dianion of a substituted tetraphenylporphyrin and R is a CH3 or OCH3 substituent on the four phenyl rings of the macrocycle. Two reductions and three oxidations are observed for each compound in CH2Cl2 containing 0.10 M tetra-n-butylammonium perchlorate. The first reduction of the compounds without a nitro substituent is metal-centered and leads to formation of a Co(I) porphyrin which then reacts with the CH2Cl2 solvent to generate a carbon σ-bonded Co(III)-R complex. A further reduction then occurs at more negative potentials to generate an unstable Co(II) σ-bonded compound. In contrast to these reactions, the first reduction of the nitro-substituted porphyrins is macrocycle-centered under the same solution conditions and gives a Co(II) porphyrin π-anion radical product. This reversible electron transfer is then followed at more negative potentials by a second reversible one-electron addition to give a Co(II) dianion. Three reversible one-electron oxidations are also seen for each compound. The first is metal-centered and the next two involve the conjugated π-system of the macrocycle. Each neutral Co(II) porphyrin was also examined as to its catalytic activity for electroreduction of molecular oxygen when coated on an edge-plane pyrolytic graphite electrode in 1.0 M HClO4. The ß-pyrrole nitro-substituted derivatives were shown to be better catalysts than the non-nitro substituted compounds under the utilized experimental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...