Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(6): e0156292, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27258120

RESUMO

Recombinant human transforming growth factor beta-3 (rhTGF-ß3) is a key regulator of chondrogenesis in stem cells and cartilage formation. We have developed a novel drug delivery system that continuously releases rhTGF-ß3 using a multilayered extracellular matrix (ECM) membrane. We hypothesize that the sustained release of rhTGF-ß3 could activate stem cells and result in enhanced repair of cartilage defects. The properties and efficacy of the ECM multilayer-based delivery system (EMLDS) are investigated using rhTGF-ß3 as a candidate drug. The bioactivity of the released rhTGF-ß3 was evaluated through chondrogenic differentiation of mesenchymal stem cells (MSCs) using western blot and circular dichroism (CD) analyses in vitro. The cartilage reparability was evaluated through implanting EMLDS with endogenous and exogenous MSC in both in vivo and ex vivo models, respectively. In the results, the sustained release of rhTGF-ß3 was clearly observed over a prolonged period of time in vitro and the released rhTGF-ß3 maintained its structural stability and biological activity. Successful cartilage repair was also demonstrated when rabbit MSCs were treated with rhTGF-ß3-loaded EMLDS ((+) rhTGF-ß3 EMLDS) in an in vivo model and when rabbit chondrocytes and MSCs were treated in ex vivo models. Therefore, the multilayer ECM membrane could be a useful drug delivery system for cartilage repair.


Assuntos
Cartilagem Articular/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Recombinantes/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Animais , Bioensaio , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese/fisiologia , Dicroísmo Circular , Coelhos , Proteínas Recombinantes/genética , Suínos , Fator de Crescimento Transformador beta3/genética
2.
Materials (Basel) ; 9(1)2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-28787849

RESUMO

In this study, we examined whether porcine articular cartilage (PAC) is a suitable and effective anti-adhesive material. PAC, which contained no non-collagenous tissue components, was collected by mechanical manipulation and decellularization of porcine knee cartilage. The PAC film for use as an anti-adhesive barrier was easily shaped into various sizes using homemade silicone molds. The PAC film was cross-linked to study the usefulness of the anti-adhesive barrier shape. The cross-linked PAC (Cx-PAC) film showed more stable physical properties over extended periods compared to uncross-linked PAC (UnCx-PAC) film. To control the mechanical properties, Cx-PAC film was thermally treated at 45 °C or 65 °C followed by incubation at room temperature. The Cx-PAC films exhibited varying enthalpies, ultimate tensile strength values, and contact angles before and after thermal treatment and after incubation at room temperature. Next, to examine the anti-adhesive properties, human umbilical vein endothelial cells (HUVECs) were cultured on Cx-PAC and thermal-treated Cx-PAC films. Scanning electron microscopy, fluorescence, and MTT assays showed that HUVECs were well adhered to the surface of the plate and proliferated, indicating no inhibition of the attachment and proliferation of HUVECs. In contrast, Cx-PAC and thermal-treated Cx-PAC exhibited little and/or no cell attachment and proliferation because of the inhibition effect on HUVECs. In conclusion, we successfully developed a Cx-PAC film with controllable mechanical properties that can be used as an anti-adhesive barrier.

3.
Ann Biomed Eng ; 43(4): 1003-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25253469

RESUMO

Tissue engineering using a biocompatible scaffold with various cells might be a solution for tracheal reconstruction. We investigated the plausibility of using mesenchymal stem cells (MSCs) seeded on a porcine cartilage powder (PCP) scaffold for tracheal defect repair. PCP made with minced and decellularized porcine articular cartilage was molded into a 5 × 12 mm (height × diameter) scaffold. MSCs from young rabbit bone marrow were expanded and cultured with the PCP scaffold. After 7 weeks culture, the tracheal implants were transplanted on a 5 × 10 mm tracheal defect in six rabbits. 6 and 10 weeks postoperatively, the implanted area was evaluated. None of the six rabbits showed any sign of respiratory distress. Endoscopic examination revealed that respiratory epithelium completely covered the regenerated trachea and there were no signs of collapse or blockage. A patent luminal contour of the trachea was observed on the computed tomography scan in all six rabbits and the reconstructed areas were not narrow compared to normal adjacent trachea. Histologic examination showed that neo-cartilage was successfully produced with minimal inflammation or granulation tissue. Ciliary beating frequency of the regenerated epithelium was not significantly different from the normal adjacent mucosa. MSCs cultured with a PCP scaffold successfully restored not only the shape but also the function of the trachea without any graft rejection.


Assuntos
Cartilagem/química , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual , Alicerces Teciduais/química , Traqueia , Animais , Células Cultivadas , Masculino , Células-Tronco Mesenquimais/citologia , Coelhos , Suínos
4.
Int J Pediatr Otorhinolaryngol ; 78(1): 32-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24280440

RESUMO

OBJECTIVES: Tracheal reconstruction with tissue-engineering technique has come into the limelight in the realm of head and neck surgery. We intended to evaluate the plausibility of allogenic chondrocytes cultured with porcine cartilage-derived substance (PCS) scaffold for partial tracheal defect reconstruction. METHODS: Powder made from crushed and decellularized porcine articular cartilage was formed as 5 mm × 12 mm (height × diameter) scaffold. Chondrocytes from rabbit articular cartilage were expanded and cultured with PCS scaffold. After 7 weeks culture, the scaffolds were implanted on a 5 mm × 10 mm artificial tracheal defect in six rabbits. Two, four and eight weeks postoperatively, the sites were evaluated endoscopically, radiologically, histologically and functionally. RESULTS: None of the six rabbits showed any sign of respiratory distress. Endoscopic examination did not show any collapse or blockage of the reconstructed trachea and the defects were completely covered with regenerated respiratory epithelium. Computed tomography showed good luminal contour of trachea. Postoperative histologic data showed that the implanted chondrocyte successfully formed neo-cartilage with minimal inflammatory response and granulation tissue. Ciliary beat frequency of regenerated epithelium was similar to those of normal adjacent mucosa. CONCLUSIONS: The shape and function of reconstructed trachea using allogenic chondrocytes cultured with PCS scaffold was restored successfully without any graft rejection.


Assuntos
Cartilagem/transplante , Condrócitos/transplante , Procedimentos de Cirurgia Plástica/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais , Traqueia/cirurgia , Aloenxertos , Animais , Técnicas de Cultura de Células , Condrócitos/citologia , Técnicas de Cocultura , Coelhos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...