Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dent Sci ; 18(3): 1016-1022, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404657

RESUMO

Background/purpose: Few studies have focused on the influence of simulated toothbrush abrasion on the surface qualities of novel nanofilled and nanohybrid composites. The aim of the study was to evaluate the surface roughness and gloss values of resin-based composite (RBC) materials with various filler types before and after simulated toothbrush abrasion. Materials and methods: One nanofilled (Filtek Z350 XT [FT3]), two nanohybrids (Harmonize [HM] and Clearfil Majesty [CM]) and one microhybrid (Filtek Z250 [FT2]) were evaluated. Twelve specimens of each material were made and polished with silicon carbide sandpapers. Initial surface roughness and gloss values were measured as negative controls. Then, all specimens were subjected to simulated toothbrush abrasion on a custom-made apparatus. After 2000, 4000 and 8000 cycles, the surface roughness and gloss values of all specimens were tested. One additional specimen from each group was selected for scanning electron microscope (SEM) analysis. Results: For FT3, Ra and GU values did not significantly change until after 8000 cycles during the process of toothbrushing (P > 0.05). For HM, CM and FT2, the Ra and GU values significantly decreased after 4000 and 8000 cycles of toothbrush abrasion (P < 0.05). After 8000 cycles of toothbrush abrasion, FT3 presented the lowest surface roughness and highest gloss values of all materials (P < 0.05). SEM images showed that surface textures and irregularities corresponded to the results of surface roughness and gloss. Conclusion: Surface roughness and gloss after simulated toothbrush abrasion were material dependent. Nanofilled resin composite presented the lowest Ra values and highest GU values.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(12): 3335-40, 2012 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-23427563

RESUMO

Estimating minerals abundance from reflectance spectra is one of the fundamental goals of remote sensing lunar exploration, and the main difficulties are the complicated mixing law of minerals spectrum and spectral features being sensitive to several kinds of factors such as topography, particle size and roughness etc. A method based on spectral unmixing was put forward and tested in the present paper. Before spectra are unmixed the spectral continuum is removed for clarifying and strengthening spectral features. The absorption features and reflectance features (the upward curving parts of spectra between absorption features) are integrated for unmixing to improve the unmixing performance. The Hapke model was used to correct unmixing error due to nonlinear mixing of minerals spectra. Forty three mixed spectra of olivine, clinopyroxene, hypersthene and plagioclase were used to validate the above method. The four minerals abundance was estimated under the conditions of being unaware of endmember spectra used to mix, granularity and chemical composition of minerals. Residual error, abundance error and correlation coefficient between retrieved and true abundance were 5.0 Vol%, 14.4 Vol% and 0.92 respectively. The method and result of this paper could be referred in the lunar minerals mapping of imaging spectrometer data such as M3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...