Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1355253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601941

RESUMO

We studied the Escherichia coli outer membrane protein Fiu, a presumed transporter of monomeric ferric catecholates, by introducing Cys residues in its surface loops and modifying them with fluorescein maleimide (FM). Fiu-FM bound iron complexes of the tricatecholate siderophore enterobactin (FeEnt) and glucosylated enterobactin (FeGEnt), their dicatecholate degradation product Fe(DHBS)2 (FeEnt*), the monocatecholates dihydroxybenzoic acid (FeDHBA) and dihydroxybenzoyl serine (FeDHBS), and the siderophore antibiotics cefiderocol (FDC) and MB-1. Unlike high-affinity ligand-gated porins (LGPs), Fiu-FM had only micromolar affinity for iron complexes. Its apparent KD values for FeDHBS, FeDHBA, FeEnt*, FeEnt, FeGEnt, FeFDC, and FeMB-1 were 0.1, 0.7, 0.7, 1.0, 0.3, 0.4, and 4 µM, respectively. Despite its broad binding abilities, the transport repertoires of E. coli Fiu, as well as those of Cir and FepA, were less broad. Fiu only transported FeEnt*. Cir transported FeEnt* and FeDHBS (weakly); FepA transported FeEnt, FeEnt*, and FeDHBA. Both Cir and FepA bound FeGEnt, albeit with lower affinity. Related transporters of Acinetobacter baumannii (PiuA, PirA, BauA) had similarly moderate affinity and broad specificity for di- or monomeric ferric catecholates. Both microbiological and radioisotopic experiments showed Fiu's exclusive transport of FeEnt*, rather than ferric monocatecholate compounds. Molecular docking and molecular dynamics simulations predicted three binding sites for FeEnt*in the external vestibule of Fiu, and a fourth site deeper in its interior. Alanine scanning mutagenesis in the outermost sites (1a, 1b, and 2) decreased FeEnt* binding affinity as much as 20-fold and reduced or eliminated FeEnt* uptake. Finally, the molecular dynamics simulations suggested a pathway of FeEnt* movement through Fiu that may generally describe the process of metal transport by TonB-dependent receptors.

2.
J Bacteriol ; 206(5): e0002424, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38591913

RESUMO

Microbes synthesize and secrete siderophores, that bind and solubilize precipitated or otherwise unavailable iron in their microenvironments. Gram (-) bacterial TonB-dependent outer membrane receptors capture the resulting ferric siderophores to begin the uptake process. From their similarity to fepA, the structural gene for the Escherichia coli ferric enterobactin (FeEnt) receptor, we identified four homologous genes in the human and animal ESKAPE pathogen Klebsiella pneumoniae (strain Kp52.145). One locus encodes IroN (locus 0027 on plasmid pII), and three other loci encode other FepA orthologs/paralogs (chromosomal loci 1658, 2380, and 4984). Based on the crystal structure of E. coli FepA (1FEP), we modeled the tertiary structures of the K. pneumoniae FepA homologs and genetically engineered individual Cys substitutions in their predicted surface loops. We subjected bacteria expressing the Cys mutant proteins to modification with extrinsic fluorescein maleimide (FM) and used the resulting fluorescently labeled cells to spectroscopically monitor the binding and transport of catecholate ferric siderophores by the four different receptors. The FM-modified FepA homologs were nanosensors that defined the ferric catecholate uptake pathways in pathogenic strains of K. pneumoniae. In Kp52.145, loci 1658 and 4984 encoded receptors that primarily recognized and transported FeEnt; locus 0027 produced a receptor that principally bound and transported FeEnt and glucosylated FeEnt (FeGEnt); locus 2380 encoded a protein that bound ferric catecholate compounds but did not detectably transport them. The sensors also characterized the uptake of iron complexes, including FeGEnt, by the hypervirulent, hypermucoviscous K. pneumoniae strain hvKp1. IMPORTANCE: Both commensal and pathogenic bacteria produce small organic chelators, called siderophores, that avidly bind iron and increase its bioavailability. Klebsiella pneumoniae variably produces four siderophores that antagonize host iron sequestration: enterobactin, glucosylated enterobactin (also termed salmochelin), aerobactin, and yersiniabactin, which promote colonization of different host tissues. Abundant evidence links bacterial iron acquisition to virulence and infectious diseases. The data we report explain the recognition and transport of ferric catecholates and other siderophores, which are crucial to iron acquisition by K. pneumoniae.


Assuntos
Ferro , Klebsiella pneumoniae , Sideróforos , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/genética , Sideróforos/metabolismo , Ferro/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Enterobactina/metabolismo , Transporte Biológico , Proteínas de Transporte
3.
J Sci Food Agric ; 104(4): 2502-2517, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37985238

RESUMO

BACKGROUND: Auricularia auricula is rich in bioactive components, and microbial fermentation can further dramatically increase its content and bioavailability. However, there are few studies on the relationship between fermented A. auricula pulp (FAAP) and gut microbiota. In this study, standard strains Lactobacillus plantarum 21801 and 21805 purchased from the China Center of Industrial Culture Collection were used to ferment A. auricula pulp at a ratio of 2:1, with an inoculum of 5%, a fermentation temperature of 31 °C, and a fermentation time of 22 h. The nutritional properties, aroma, and color of FAAP and their effects on the body characteristics of mice and the structure and abundance of gut microbiota are discussed. RESULTS: The results showed that, compared with A. auricula pulp, FAAP significantly increased the nutritional properties while maintaining favorable sensory quality and flavor profiles. Among them, the content of total polyphenols and total flavonoids reached 22.04 µg mL-1 and 20.56 µg mL-1 respectively, and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid free-radical scavenging rate increased to 73.21%. The consumption of FAAP had no negative effects on weight or liver and kidney function in mice and dramatically enhanced the antioxidant capacity in the liver and serum. The production of short-chain fatty acids in the gut was promoted, the relative abundance of beneficial bacteria (Lactobacillus, Bifidobacterium, norank_f__Muribaculaceae and unclassified_f__Lachnospiraceae) increased, and the growth of some pathogenic bacteria (Helicobacter, Mucispirillum, and Alloprevotella) was inhibited. CONCLUSION: These findings demonstrate that FAAP is rich in nutrients and has unique functional properties that promote host health and regulate the gut microbiota. © 2023 Society of Chemical Industry.


Assuntos
Auricularia , Microbioma Gastrointestinal , Lactobacillus , Lactobacillus/metabolismo , Antioxidantes/metabolismo , Polifenóis/farmacologia , Bactérias , Fermentação
4.
J Biol Chem ; 298(3): 101651, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101443

RESUMO

Siderophores are iron-chelating molecules that solubilize Fe3+ for microbial utilization and facilitate colonization or infection of eukaryotes by liberating host iron for bacterial uptake. By fluorescently labeling membrane receptors and binding proteins, we created 20 sensors that detect, discriminate, and quantify apo- and ferric siderophores. The sensor proteins originated from TonB-dependent ligand-gated porins (LGPs) of Escherichia coli (Fiu, FepA, Cir, FhuA, IutA, BtuB), Klebsiella pneumoniae (IroN, FepA, FyuA), Acinetobacter baumannii (PiuA, FepA, PirA, BauA), Pseudomonas aeruginosa (FepA, FpvA), and Caulobacter crescentus (HutA) from a periplasmic E. coli binding protein (FepB) and from a human serum binding protein (siderocalin). They detected ferric catecholates (enterobactin, degraded enterobactin, glucosylated enterobactin, dihydroxybenzoate, dihydroxybenzoyl serine, cefidericol, MB-1), ferric hydroxamates (ferrichromes, aerobactin), mixed iron complexes (yersiniabactin, acinetobactin, pyoverdine), and porphyrins (hemin, vitamin B12). The sensors defined the specificities and corresponding affinities of the LGPs and binding proteins and monitored ferric siderophore and porphyrin transport by microbial pathogens. We also quantified, for the first time, broad recognition of diverse ferric complexes by some LGPs, as well as monospecificity for a single metal chelate by others. In addition to their primary ferric siderophore ligands, most LGPs bound the corresponding aposiderophore with ∼100-fold lower affinity. These sensors provide insights into ferric siderophore biosynthesis and uptake pathways in free-living, commensal, and pathogenic Gram-negative bacteria.


Assuntos
Proteínas de Bactérias , Corantes Fluorescentes , Bactérias Gram-Negativas Quimiolitotróficas , Sideróforos , Acinetobacter baumannii , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Caulobacter crescentus , Enterobactina/análise , Enterobactina/metabolismo , Escherichia coli/metabolismo , Corantes Fluorescentes/química , Bactérias Gram-Negativas Quimiolitotróficas/química , Bactérias Gram-Negativas Quimiolitotróficas/genética , Bactérias Gram-Negativas Quimiolitotróficas/metabolismo , Humanos , Ferro/metabolismo , Klebsiella pneumoniae , Sideróforos/análise , Sideróforos/metabolismo
5.
Chem Rev ; 121(9): 5193-5239, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33724814

RESUMO

Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.


Assuntos
Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Compostos Férricos/química , Compostos Férricos/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/patogenicidade , Humanos , Ferro/química , Proteínas de Membrana/química , Modelos Moleculares , Sideróforos/química , Sideróforos/metabolismo
6.
J Biol Chem ; 295(15): 4974-4984, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32098871

RESUMO

The Escherichia coli outer membrane receptor FepA transports ferric enterobactin (FeEnt) by an energy- and TonB-dependent, but otherwise a mechanistically undetermined process involving its internal 150-residue N-terminal globular domain (N-domain). We genetically introduced pairs of Cys residues in different regions of the FepA tertiary structure, with the potential to form disulfide bonds. These included Cys pairs on adjacent ß-strands of the N-domain (intra-N) and Cys pairs that bridged the external surface of the N-domain to the interior of the C-terminal transmembrane ß-barrel (inter-N-C). We characterized FeEnt uptake by these mutants with siderophore nutrition tests, [59Fe]Ent binding and uptake experiments, and fluorescence decoy sensor assays. The three methods consistently showed that the intra-N disulfide bonds, which restrict conformational motion within the N-domain, prevented FeEnt uptake, whereas most inter-N-C disulfide bonds did not prevent FeEnt uptake. These outcomes indicate that conformational rearrangements must occur in the N terminus of FepA during FeEnt transport. They also argue against disengagement of the N-domain out of the channel as a rigid body and suggest instead that it remains within the transmembrane pore as FeEnt enters the periplasm.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Enterobactina/metabolismo , Escherichia coli/metabolismo , Mutação , Conformação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico , Proteínas de Transporte/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos , Receptores de Superfície Celular/genética
7.
J Biol Chem ; 294(12): 4682-4692, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30679312

RESUMO

Sensitive assays of biochemical specificity, affinity, and capacity are valuable both for basic research and drug discovery. We created fluorescent sensors that monitor high-affinity binding reactions and used them to study iron acquisition by ESKAPE bacteria, which are frequently responsible for antibiotic-resistant infections. By introducing site-directed Cys residues in bacterial iron transporters and modifying them with maleimide fluorophores, we generated living cells or purified proteins that bind but do not transport target compounds. These constructs sensitively detected ligand concentrations in solution, enabling accurate, real-time spectroscopic analysis of membrane transport by other cells. We assessed the efficacy of these "fluorescent decoy" (FD) sensors by characterizing active iron transport in the ESKAPE bacteria. The FD sensors monitored uptake of both ferric siderophores and hemin by the pathogens. An FD sensor for a particular ligand was universally effective in observing the uptake of that compound by all organisms we tested. We adapted the FD sensors to microtiter format, where they allow high-throughput screens for chemicals that block iron uptake, without genetic manipulations of the virulent target organisms. Hence, screening assays with FD sensors facilitate studies of mechanistic biochemistry, as well as discovery of chemicals that inhibit prokaryotic membrane transport. With appropriate design, FD sensors are potentially applicable to any pro- or eukaryotic high-affinity ligand transport process.


Assuntos
Bactérias/metabolismo , Técnicas Biossensoriais , Ferro/metabolismo , Transporte Biológico , Fluorescência , Heme/metabolismo , Ensaios de Triagem em Larga Escala , Espectrometria de Fluorescência
8.
Arch Biochem Biophys ; 655: 12-17, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30092228

RESUMO

A molecular chaperone ClpB disaggregates and reactivates aggregated proteins in cooperation with DnaK, DnaJ, and GrpE. Within a cellular environment, ClpB must distinguish between properly folded and aggregated proteins by recognizing specific physical and/or chemical surface properties of the aggregates. However, the molecular mechanism of substrate binding to ClpB is poorly understood. We hypothesized that ClpB recognizes those polypeptide segments that promote protein aggregation because they are likely present at the surface of growing aggregates. We used an algorithm TANGO (Fernandez-Escamilla et al., Nat. Biotech. 2004, 22, 1302) to predict the aggregation-prone segments within the model ClpB-binding peptides and investigated interactions of the FITC-labeled peptides with ClpB using fluorescence anisotropy. We found that ClpB binds the substrate-mimicking peptides with positive cooperativity, which is consistent with an allosteric linkage between substrate binding and ClpB oligomerization. The apparent affinity towards ClpB for peptides displaying different predicted aggregation propensities correlates with the peptide length. However, discrete aggregation-prone segments within the peptides are neither sufficient nor necessary for efficient interaction with ClpB. Our results suggest that the substrate recognition mechanism of ClpB may rely on global surface properties of aggregated proteins rather than on local sequence motifs.


Assuntos
Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Choque Térmico/metabolismo , Peptídeos/metabolismo , Algoritmos , Sequência de Aminoácidos , Peptídeos/química , Ligação Proteica , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...