Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Assist Technol ; 32(5): 277-286, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-30644792

RESUMO

Pressure ulcer interventions are commonly assessed with measures of seating interface pressure, such as peak pressure gradients (PPGs). Decreases in PPG magnitudes may reduce pressure ulcer risk by decreasing tissue deformation and increasing tissue perfusion of at-risk weight-bearing tissues. Changes in PPG directions, which have previously been overlooked in the seating pressure literature, may provide a transient increase in blood flow to at-risk tissues, even if the PPG magnitude and location remain the same. The purpose of this study was to assess both PPG components in response to combinations of wheelchair tilt and recline angles. Thirteen power wheelchair users were recruited into the study. Six combinations of wheelchair tilt (15°, 25°, and 35°) and recline (10° and 30°) were tested in random order. Each combination was tested with 5-min upright sitting, 5-min tilt and recline, and 5-min maximal pressure relief recovery. Changes in PPG magnitudes and PPG directions under the left ischial tuberosity were computed for the six angle combinations. The findings in this study suggested that when combining wheelchair tilt and recline, the recline function may be particularly useful in reducing PPG magnitudes, while the tilt function may be particularly useful in manipulating PPG directions.


Assuntos
Pressão , Postura Sentada , Traumatismos da Medula Espinal/fisiopatologia , Cadeiras de Rodas , Adulto , Pessoas com Deficiência , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pressão/efeitos adversos , Úlcera por Pressão/etiologia , Úlcera por Pressão/prevenção & controle , Projetos de Pesquisa , Suporte de Carga
2.
Med Biol Eng Comput ; 58(1): 227-237, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31832862

RESUMO

The purpose of this study was to predict and visualize pressure ulcer risks by using a novel approach of extracting computational features from seating interface pressures in people with spinal cord injury (SCI). In conventional clinical practice, seating interface pressure assessments rely on descriptive statistics of pressure magnitude. In this study, rank-2 nonnegative matrix factorization (NMF) was applied to the seating interface pressure maps during loading and pressure-relieving conditions in 16 people with SCI. The NMF basis images were used for visual interpretation and computational prediction of pressure ulcer risks. The two NMF basis images encapsulated pressure concentration and pressure dispersion, respectively. The first basis converged on the ischial tuberosity under both seating conditions, whereas the second basis converged anterior to the ischial tuberosity during loading and converged on the coccyx during unloading. The classification yielded 81.25% overall accuracy. In general, higher ulceration risk was associated with higher and lower activations of the first and second bases, respectively. The NMF pipeline yielded promising performance. Basis visualization affirmed the importance of lower ischial pressure and higher distribution dispersion while also revealing that clinical practice may currently be underestimating the importance of coccygeal pressure in response to pressure-relieving activities. Graphical abstract.


Assuntos
Algoritmos , Postura , Úlcera por Pressão/diagnóstico , Úlcera por Pressão/etiologia , Pressão , Traumatismos da Medula Espinal/complicações , Adulto , Humanos , Fatores de Risco
3.
Entropy (Basel) ; 21(1)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33266806

RESUMO

Pressure ulcers are one of the most common complications of a spinal cord injury (SCI). Prolonged unrelieved pressure is thought to be the primary causative factor resulting in tissue ischemia and eventually pressure ulcers. Previous studies suggested that local cooling reduces skin ischemia of the compressed soft tissues based on smaller hyperemic responses. However, the effect of local cooling on nonlinear properties of skin blood flow (SBF) during hyperemia is unknown. In this study, 10 wheelchair users with SCI and 10 able-bodied (AB) controls underwent three experimental protocols, each of which included a 10-min period as baseline, a 20-min intervention period, and a 20-min period for recovering SBF. SBF was measured using a laser Doppler flowmetry. During the intervention period, a pressure of 60 mmHg was applied to the sacral skin, while three skin temperature settings were tested, including no temperature change, a decrease by 10 °C, and an increase by 10 °C, respectively. A multiscale entropy (MSE) method was employed to quantify the degree of regularity of blood flow oscillations (BFO) associated with the SBF control mechanisms during baseline and reactive hyperemia. The results showed that under pressure with cooling, skin BFO both in people with SCI and AB controls were more regular at multiple time scales during hyperemia compared to baseline, whereas under pressure with no temperature change and particularly pressure with heating, BFO were more irregular during hyperemia compared to baseline. Moreover, the results of surrogate tests indicated that changes in the degree of regularity of BFO from baseline to hyperemia were only partially attributed to changes in relative amplitudes of endothelial, neurogenic, and myogenic components of BFO. These findings support the use of MSE to assess the efficacy of local cooling on reactive hyperemia and assess the degree of skin ischemia in people with SCI.

4.
Am J Phys Med Rehabil ; 93(12): 1019-30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25353193

RESUMO

OBJECTIVE: Clinicians commonly recommend that power wheelchair users with spinal cord injury perform wheelchair tilt and recline maneuvers to redistribute seating loads away from the ischial tuberosities. However, ischial pressure reduction may be accompanied by coccygeal pressure increases. Although the coccyx is among the most common sites of pressure ulcers, few studies have reported coccygeal interface pressure. The purpose of this study was to investigate both ischial and coccygeal interface pressures in response to changes in wheelchair tilt and recline angles. DESIGN: Thirteen power wheelchair users were recruited into this study. Six combinations of wheelchair tilt (15, 25, and 35 degrees) and recline (10 and 30 degrees, corresponding to traditional recline conventions of 100 and 120 degrees, respectively) angles were tested in random order. Each combination was tested with 5 mins of upright sitting, 5 mins of tilt and recline, as well as 5 mins of maximal pressure relief recovery. Peak pressure indices were calculated at the ischial and coccygeal sites. RESULTS: Ischial pressures monotonically decreased in response to increasing combinations of tilt and recline. Increments of 15 degrees of tilt did not produce significant differences under either recline angle, whereas increments of 25 degrees of tilt produced significant differences under both recline angles. Coccygeal pressures increased in response to the four smallest (of six) combinations of tilt and recline, whereas they decreased in response to the largest two combinations. CONCLUSIONS: Ischial pressures seemed to be redistributed to the coccyx in response to the four smallest angle combinations and redistributed to the back support in response to the two largest angle combinations. Future work should confirm this pressure redistribution to the back support and determine the back support locations of redistribution.


Assuntos
Posicionamento do Paciente , Úlcera por Pressão/prevenção & controle , Região Sacrococcígea/fisiologia , Suporte de Carga/fisiologia , Cadeiras de Rodas , Cóccix/fisiologia , Desenho de Equipamento , Feminino , Humanos , Ísquio/fisiologia , Masculino , Fluxo Sanguíneo Regional/fisiologia , Traumatismos da Medula Espinal/reabilitação
5.
Biomed Res Int ; 2014: 508583, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25057491

RESUMO

The purpose of this study was to determine the effect of the sensel window's location and size when calculating the peak pressure index (PPI) of pressure mapping with varying degrees of wheelchair tilt-in-space (tilt) and recline in people with spinal cord injury (SCI). Thirteen power wheelchair users were recruited into this study. Six combinations of wheelchair tilt (15°, 25°, and 35°) and recline (10° and 30°) were used by the participants in random order. Displacements of peak pressure and center of pressure were extracted from the left side of the mapping system. Normalized PPI was computed for three sensel window dimensions (3 sensels × 3 sensels, 5 × 5, and 7 × 7). At least 3.33 cm of Euclidean displacement of peak pressures was observed in the tilt and recline. For every tilt angle, peak pressure displacement was not significantly different between 10° and 30° recline, while center of pressure displacement was significantly different (P < .05). For each recline angle, peak pressure displacement was not significantly different between pairs of 15°, 25°, and 35° tilt, while center of pressure displacement was significantly different between 15° versus 35° and 25° versus 35°. Our study showed that peak pressure displacement occurs in response to wheelchair tilt and recline, suggesting that the selected sensel window locations used to calculate PPI should be adjusted during changes in wheelchair configuration.


Assuntos
Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Adulto , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Postura/fisiologia , Pressão , Suporte de Carga/fisiologia , Cadeiras de Rodas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...