Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 89(4): 2371-2383, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488724

RESUMO

The "instant" quality of instant rice noodles is significantly affected by slow rehydration during cooking. This happens as a result of the native rice starch's low ability to gelatinize as well as the high shear and pressure utilized in industries during the widely used extrusion molding process. In order to address this issue, the rice flour was pretreated with mild steam (MS) technology. The results revealed that the rehydration qualities of the rice noodles that were extruded from the steam-treated flour significantly improved. There was a reduction of 25.5% in the rehydration time, from 443 to 330 s. The MS-treated rice starch's peak viscosity increased to 4503 from 4044 mPa/s. Decreases in gelatinization enthalpy (ΔH) and short-range ordering also suggest a reduction in difficulty in accomplishing starch gelatinization. Scanning electron microscopy studies showed particle aggregation increased as the treatment duration lasted longer. In conclusion, our findings indicate that we successfully addressed the issue of slow rehydration in instant rice noodles while presenting a novel approach for their manufacturing in the manufacturing sector.


Assuntos
Oryza , Vapor , Oryza/química , Culinária , Amido/química , Viscosidade , Farinha/análise
2.
Int J Biol Macromol ; 253(Pt 1): 126496, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37633568

RESUMO

This current research explored the application of cold plasma (CP) treatment to modify zein-alginate oligosaccharide (zein-AOS) composites in an ethanol-water solution. Anti-solvent method was used to prepare zein-AOS nanoparticles (NPs), and the objective was to investigate the mechanism by which CP promotes interaction between protein and saccharides. Characterization results indicated that CP treatment improved hydrogen bonding and electrostatic interaction between zein and AOS. The CP zein-AOS NPs underwent dispersion and rearrangement, resulting in smaller aggregates with better dispersibility. Among the various induction conditions tested, the zein-AOS85 NPs (induced at 85 W for 2 min) exhibited superior performance as delivery wall materials, with smaller particle size (234.67 nm), larger specific surface area (9.443 m2/g), and higher surface charge (-35.43 mV). In addition, zein-AOS85 showed high stability when used as delivery wall material, providing more binding sites and self-assembly dynamics for nutrients. Curcumin was used as the nutrient model in this study, and CP was found to enhance hydrogen bonding, electrostatic interaction, and hydrophobic interaction between zein, AOS, and nutrients, resulting in increased encapsulation efficiency (EE) from 63.80 % to 85.17 %. The delivery system also exhibited good pH, ionic strength, storage, and dispersion stability.


Assuntos
Curcumina , Nanopartículas , Gases em Plasma , Zeína , Zeína/química , Alginatos , Nanopartículas/química , Curcumina/química , Oligossacarídeos , Tamanho da Partícula
3.
Int J Biol Macromol ; 232: 123309, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36652987

RESUMO

To improve the stability and bioavailability of the delivered hydrophobic nutrients, the zein-based delivery system was modified by alginate oligosaccharide (AOS), cold plasma (CP) treatments, and synergistically. The digestive behavior of each was investigated in an INFOGEST static in vitro digestion model. The results showed that AOS and CP treatments and their synergistic effects improved the dispersion and stability of the delivery system, leading to a more concentrated particle size distribution and higher particle surface charge. Both CP treatments and AOS increased the release rate of Curcumin (Cur) at small intestine (11.8 % to 20.5 % and 11.8 % to 24.64 %, respectively), and the synergistic effect was higher (11.8 % to 43.84 %). The wall material modified showed a higher encapsulation efficiency of Cur (52.83 % to 85.17 %). Cur release rate measurements showed that the wall material modified could have a positive effect on the slow release of Cur. SDS-page electrophoresis revealed that the slow release was due to the enhanced resistance of wall material to digestive fluids. Thus, treatment with AOS and CP treatments, and the synergism are suitable for modifying zein-based delivery systems for the encapsulation, stabilization, and slow release of hydrophobic nutrients during digestion in the field of functional foods.


Assuntos
Curcumina , Nanopartículas , Gases em Plasma , Zeína , Nanopartículas/química , Alginatos/química , Disponibilidade Biológica , Zeína/química , Curcumina/farmacologia , Curcumina/química , Tamanho da Partícula
4.
Food Chem ; 408: 135190, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535187

RESUMO

Calcium has limited bioavailability because of the formation of calcium phosphate deposits in the gastrointestinal tract. In this study, we prepared a dextran-casein phosphopeptide (CPP)-Ca2+ delivery system and evaluated for Ca2+ binding mechanism, structure, stability, and sustained release of Ca2+ and assessed inhibition of calcium phosphate precipitation. The results revealed that Ca2+ binds to dextran-CPP through the phosphate, carboxyl, and amino groups and forms crystal clusters. Furthermore, compared with single polymer CPP-Ca2+ conjugates, copolymer dextran-CPP-Ca2+ conjugates exhibited improved stability at various conditions (pH, temperature, and coexisting food), efficiently reduced the calcium phosphate precipitation, and improved sustained-release of Ca2+. Collectively, dextran-CPP-Ca2+ conjugates can be an efficient Ca2+ delivery system.


Assuntos
Cálcio , Dextranos , Cálcio/química , Caseínas/química , Fosfatos de Cálcio , Fosfopeptídeos/química
5.
J Food Sci ; 88(1): 83-93, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36510381

RESUMO

Gelation and structure of oat starch significantly affect qualities of whole oat flour noodles. During extrusion, the structure of noodles is loose, resulting in high cooking loss and poor texture. Therefore, oat noodles were treated with high temperature, high humidity (HTH), and cold storage (CS), and their structure and qualities were analyzed. The results showed that compared with CS, HTH could reduce the cooking loss of noodles from 10.12% to 6.13%, increase the hardness (65.59 g) and chewiness (20.67) of noodles, and effectively improve the sensory quality of noodles. The change in texture and sensory of noodles was due to HTH by accelerating the retrogradation of starch in noodles, promoting the cross-linking of starch molecules to form an ordered structure, causing an increase in the ordered degree and crystallinity of starch and making the structure of noodles denser. It made the mobility of water in the noodles decrease, and more tightly bound water was transformed into weakly bound water and free water. HTH can be applied to industrial production of whole oat flour noodles. This study could effectively guide the production of high-quality whole oat flour noodles without any food additives.


Assuntos
Avena , Farinha , Farinha/análise , Avena/metabolismo , Temperatura , Umidade , Amido/química , Culinária , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...