Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(21): e2313211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38339916

RESUMO

Biocompatible magnesium alloys represent revolutionary implantable materials in dentistry and orthopedics but face challenges due to rapid biocorrosion, necessitating protective coatings to mitigate dysfunction. Directly integrating durable protective coatings onto Mg surfaces is challenging because of intrinsic low coating compactness. Herein, inspired by tooth enamel, a novel highly compact dual-protection inorganic-protein (inorganicPro) coating is in situ constructed on Mg surfaces through bovine serum albumin (BSA) protein-boosted reaction between sodium fluoride (NaF) and Mg substrates. The association of Mg ions and BSA establishes a local hydrophobic domain that lowers the formation enthalpy of NaMgF3 nanoparticles. This process generates finer nanoparticles that function as "bricks," facilitating denser packing, consequently reducing voidage inside coatings by over 50% and reinforcing mechanical durability. Moreover, the incorporation of BSA in and on the coatings plays two synergistic roles: 1) acting as "mortar" to seal residual cracks within coatings, thereby promoting coating compactness and tripling anticorrosion performance, and 2) mitigating fouling-accelerated biocorrosion in complex biosystems via tenfold resistance against biofoulant attachments, including biofluids, proteins, and metabolites. This innovative strategy, leveraging proteins to alter inorganic reactions, benefits the future coating design for Mg-based and other metallic materials with tailored anticorrosion and antifouling performances.


Assuntos
Biomineralização , Materiais Revestidos Biocompatíveis , Magnésio , Soroalbumina Bovina , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Biomineralização/efeitos dos fármacos , Magnésio/química , Animais , Bovinos , Esmalte Dentário/química , Esmalte Dentário/efeitos dos fármacos , Fluoreto de Sódio/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Corrosão , Propriedades de Superfície
2.
J Mater Chem B ; 12(2): 332-349, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37987037

RESUMO

Hydrogels with three-dimensional structures have been widely applied in various applications because of their tunable structures, which can be easily tailored with desired functionalities. However, the application of hydrogel materials in bioengineering is still constrained by their limited dosage flexibility and the requirement of invasive surgical procedures. Compared to traditional hydrogels, injectable hydrogels, with shear-thinning and/or in situ formation properties, simplify the implantation process and reduce tissue invasion, which can be directly delivered to target sites using a syringe injection, offering distinct advantages over traditional hydrogels. These injectable hydrogels incorporate physically non-covalent and/or dynamic covalent bonds, granting them self-healing abilities to recover their structural integrity after injection. This review summarizes our recent progress in preparing injectable hydrogels and discusses their performance in various bioengineering applications. Moreover, the underlying molecular interaction mechanisms that govern the injectable and functional properties of hydrogels were characterized by using nanomechanical techniques such as surface forces apparatus (SFA) and atomic force microscopy (AFM). The remaining challenges and future perspectives on the design and application of injectable hydrogels are also discussed. This work provides useful insights and guides future research directions in the field of injectable hydrogels for bioengineering.


Assuntos
Hidrogéis , Hidrogéis/química , Injeções
3.
J Colloid Interface Sci ; 650(Pt B): 1525-1535, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487283

RESUMO

HYPOTHESIS: Conventional coating strategies and materials for bio-applications with protective, diagnostic, and therapeutic functions are commonly limited by their arduous preparation processes and lack of on-demand functionalities. Herein, inspired by the 'root-leaf' structure of grass, a series of novel polyacrylate-conjugated proteins can be engineered with sticky bovine serum albumin (BSA) protein as a 'root' anchoring layer and a multifunctional polyacrylate as a 'leaf' functional layer for the facile coating procedure and versatile surface functionalities. EXPERIMENTS: The engineered proteins were synthesized based on click chemistry, where the 'root' layer can universally anchor onto both organic and inorganic substrates through a facile dip/spraying method with excellent stability in harsh solution conditions, thanks to its multiple adaptive molecular interactions with substrates that further elucidated by molecular force measurements between the 'root' BSA protein and substrates. The 'leaf' conjugated-polyacrylates imparted coatings with versatile on-demand functionalities, such as resistance to over 99% biofouling in complex biofluids, pH-responsive performance, and robust adhesion with various nanomaterials. FINDINGS: By synergistically leveraging the universal anchoring capabilities of BSA with the versatile physicochemical properties of polyacrylates, this study introduces a promising and facile strategy for imparting novel functionalities to a myriad of surfaces through engineering natural proteins and biomaterials for biotechnical and nanotechnical applications.


Assuntos
Incrustação Biológica , Materiais Revestidos Biocompatíveis , Materiais Revestidos Biocompatíveis/química , Soroalbumina Bovina/química , Propriedades de Superfície
4.
Int J Biol Macromol ; 247: 125752, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37429349

RESUMO

A major way to reduce meat waste is to extend the shelf life of chilled meat with appropriate packaging. However, most of the packaging film cannot keep meat fresh because of its poor antibacterial and water resistance performance. In this paper, a composite film for chilled meat packaging was synthesized by simple self-assembly of zinc ions with chelating carboxyl groups. Introducing zinc ions into the composite system endows excellent water resistance and antibacterial properties to the film, which are demonstrated by the water vapor permeability and Escherichia coli and Staphylococcus aureus antibacterial tests. The as-prepared composite film also showed enhanced mechanical properties due to the formation of chelation bonds between zinc ions and carboxyl groups. Moreover, the chilled meat preservation test demonstrated the as-prepared composite film can significantly extend the shelf life of pork by five days, indicating its outstanding freshness preservation property. This work demonstrated a facile method to synthesize water-resistant and antimicrobial composite film, which can appear as an effective packaging material for chilled meat and offer a new idea to solve its short shelf-life problem.


Assuntos
Anti-Infecciosos , Quitosana , Zinco , Quitosana/farmacologia , Quitosana/química , Alginatos , Embalagem de Alimentos/métodos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Carne/microbiologia , Ácidos
5.
J Colloid Interface Sci ; 635: 273-283, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36587579

RESUMO

HYPOTHESIS: Numerous hydrocarbon and fluorine-based hydrophobic surfaces have been widely applied in various engineering and bioengineering fields. It is hypothesized that the hydrophobic interactions of hydrocarbon and fluorinated surfaces in aqueous media would show some differences. EXPERIMENTS: The hydrophobic interactions of hydrocarbon and fluorinated surfaces with air bubbles in aqueous solutions have been systematically and quantitatively measured using a bubble probe atomic force microscopy (AFM) technique. Ethanol was introduced to water for modulating the solution polarity. The experimental force profiles were analyzed using a theoretical model combining the Reynolds lubrication theory and augmented Young-Laplace equation by including disjoining pressure arisen from the Derjarguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions (i.e., hydrophobic interactions). FINDINGS: The experiment results show that the hydrophobic interactions were firstly weakened and then strengthened by increasing ethanol content in the aqueous media, mainly due to the variation in interfacial hydrogen bonding network. The fluorinated surface exhibited less sensitivity to ethanol than hydrocarbon surface, which is attributed to the presence of ordered interfacial water layer. Our work reveals the different hydrophobic effects of hydrocarbon and fluorinated surfaces, with useful implications on modulating the interfacial interactions of relevant materials in various engineering and bioengineering applications.

6.
Adv Mater ; 35(6): e2208824, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36367362

RESUMO

Implantable medical devices have been widely applied in diagnostics, therapeutics, organ restoration, and other biomedical areas, but often suffer from dysfunction and infections due to irreversible biofouling. Inspired by the self-defensive "vine-thorn" structure of climbing thorny plants, a zwitterion-conjugated protein is engineered via grafting sulfobetaine methacrylate (SBMA) segments on native bovine serum albumin (BSA) protein molecules for surface coating and antifouling applications in complex biological fluids. Unlike traditional synthetic polymers of which the coating operation requires arduous surface pretreatments, the engineered protein BSA@PSBMA (PolySBMA conjugated BSA) can achieve facile and surface-independent coating on various substrates through a simple dipping/spraying method. Interfacial molecular force measurements and adsorption tests demonstrate that the substrate-foulant attraction is significantly suppressed due to strong interfacial hydration and steric repulsion of the bionic structure of BSA@PSBMA, enabling coating surfaces to exhibit superior resistance to biofouling for a broad spectrum of species including proteins, metabolites, cells, and biofluids under various biological conditions. This work provides an innovative paradigm of using native proteins to generate engineered proteins with extraordinary antifouling capability and desired surface properties for bioengineering applications.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Biônica , Polímeros/química , Propriedades de Superfície , Soroalbumina Bovina/química , Adsorção
7.
J Colloid Interface Sci ; 625: 628-639, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35772200

RESUMO

HYPOTHESIS: Polyethylene glycol (PEG) holds considerable potential in the fabrication of antifouling surfaces due to its strong hydration property. However, anchoring PEG polymer as a stable surface coating is still challenging because of its weak surface bonding property. Inspired by the mussel adhesion strategy, it is hypothesized that PEG polymer can be robustly attached onto substrates with the assistance of a "bio-glue" layer. EXPERIMENTS: The "bio-glue" layer composited of Levodopa/polyethyleneimine (LP) is firstly deposited onto substrates, followed by covalently anchoring the poly(ethylene glycol) diglycidyl ether (PEGDE) layer via ring-opening reaction. The antifouling property of as-prepared coating was characterized using several techniques including quartz crystal microbalance (QCM) and surface forces apparatus (SFA). Furthermore, the PEGDE/LP coating was applied in membrane functionalization for oil-in-water (O/W) emulsion separation. FINDINGS: PEGDE/LP coating shows outstanding stability and superior antifouling properties towards various potential foulants. In the O/W emulsion separation process, the PEGDE/LP-coated membrane maintains its super-hydrophilic property under harsh solution conditions and achieves high water flux (∼3000 L m-2 h-1 bar-1) and 90% water flux recovery ratio for separation of O/W emulsions containing different bio-foulants. This coating strategy provides a promising approach for fabricating stable coating with outstanding antifouling properties in various environmental engineering applications.


Assuntos
Incrustação Biológica , Purificação da Água , Incrustação Biológica/prevenção & controle , Emulsões , Polietilenoglicóis/química , Polietilenoimina , Polímeros/química , Água
8.
J Colloid Interface Sci ; 622: 612-624, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35533477

RESUMO

HYPOTHESIS: Development of soft conductive materials has enabled the promising future of wearable electronics for motion sensing. However, conventional soft conductive materials typically lack robust adhesive and on-demand removable properties for a target substrate. Therefore, it is believed that the integration of superior mechanical properties, electrical conductivity, and tunable adhesive properties into hydrogels would support and improve their reliable sensing performance. EXPERIMENTS: A hydrogel ionic conductor composed of cationic micelles crosslinked in the polyacrylamide (PAM) network was designed and fabricated. The viscoelastic, mechanical, adhesion, electrical, and antimicrobial properties of the hydrogel were systematically characterized. FINDINGS: The developed ionic conductor possesses a range of desirable properties including mechanical performances such as excellent stretchability (>1100%), toughness, elasticity (recovery from 1000% strain), conductivity (2.72 S·m-1), and antimicrobial property, owing to the multiple non-covalent supramolecular interactions (e.g., hydrogen bonding, hydrophobic, and π-π/cation-π interactions) present in the cross-linked network. Meanwhile, the developed hydrogel is incorporated with different stimuli-responsive polymers and exhibits a tunable adhesive property (triggerable attachment and on-demand removable capabilities) in adapt to the surrounding environmental conditions (i.e., pH, temperature). With all these significant features, the resulting hydrogel ionic conductor serves as a proof-of-concept motion-sensing system with excellent sensitivity and enhanced reliability for the detection of a wide range of motions.


Assuntos
Anti-Infecciosos , Hidrogéis , Adesivos/química , Anti-Infecciosos/farmacologia , Condutividade Elétrica , Hidrogéis/química , Íons/química , Reprodutibilidade dos Testes
9.
J Colloid Interface Sci ; 618: 111-120, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35338921

RESUMO

Conductive hydrogels hold great promises in wearable soft electronics. However, the weak mechanical properties, low sensitivity and the absence of multifunctionalities (e.g., self-healing, self-adhesive, etc.) of the conventional conductive hydrogels limit their applications. Thus, developing multifunctional hydrogels may address some of these technical issues. In this work, a multifunctional conductive hydrogel strain sensor is fabricated by incorporating a conductive polymer Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT: PSS) into a mechanically robust poly (vinyl alcohol) (PVA)/ poly (acrylic acid) (PAA) double network (DN) hydrogel. The as-prepared hydrogel sensor could span a wide spectrum of mechanical properties by simply tuning the polymer composition and the number of freezing-thawing cycles. In addition, the dynamic hydrogen bonding interactions endow the hydrogel sensor with self-healing property and reversible adhesiveness on diverse substrates. Moreover, the hydrogel sensor shows high sensitivity (Gauge Factor from 2.21 to 3.82) and can precisely detect some subtle human motions (e.g., pulse and vocal cord vibration). This work provides useful insights into the development of conductive hydrogel-based wearable soft electronics.


Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Eletrônica , Humanos , Hidrogéis/química , Álcool de Polivinil/química
10.
ACS Nano ; 15(6): 9913-9923, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34037373

RESUMO

Developing effective internal wound dressing materials is important for postoperative tissue regeneration while remains a challenge due to the poor biological environment-adaptability of conventional materials. Here, we report an example of injectable self-healing hydrogel based on gastric environment-adaptive supramolecular assembly, and have explored its application for gastric perforation healing. By leveraging the gastric environment-modulated supramolecular interactions, the self-assembled hydrogel network is orchestrated with sensitive thermo-responsibility, injectability, printability and rapid self-healing capability. The hydrogel dressing can effectively inhibit the attachment of microorganisms and demonstrates outstanding antibiofouling property. In vivo rat model further demonstrates the as-prepared hydrogel dressing simplifies the surgical procedures, reduces postoperative complications as well as enhances the healing process of gastric perforation compared with the conventional treatment. This work provides useful insights into the development of biological environment-adaptive functional materials for various biomedical applications.


Assuntos
Hidrogéis , Cicatrização , Animais , Bandagens , Ratos
11.
J Colloid Interface Sci ; 578: 598-607, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32554142

RESUMO

HYPOTHESIS: Intraoral ultrasound is a safer and economical approach to image dento-periodontal tissues and diagnose periodontal diseases compared with X-ray. A gel pad is often used as a couplant between the transducer and oral tissue to delay the ultrasound signals for better identification. However, the current commercial couplant, such as Aquaflex gel pad (AF), face many challenges, including low stability in water, poor mechanical properties, low coefficient of friction, and potential cytotoxicity issues. Polyacrylamide/sodium alginate (PAM/Alginate) double-network (DN) tough hydrogel could address these issues as the potential couplant for intraoral ultrasound imaging. EXPERIMENTS: Different critical properties required for intraoral ultrasound imaging, including stability in water, mechanical properties, frictional properties, ultrasound properties and biocompatibility of PAM/Alginate DN tough hydrogels were evaluated and compared with those of AF. FINDINGS: The PAM/Alginate DN hydrogel not only possesses better stability in water as well as improved mechanical properties and higher coefficients of friction than AF but also can provide similar ultrasound image quality as AF does. Moreover, the PAM/Alginate DN hydrogel shows lower cytotoxicity to both cancer (Hela) and fibroblast cells (MRC-5). With all these significant features, such tough hydrogels serve as a proof-of-concept ultrasound couplant with great potential in intraoral ultrasound imaging.


Assuntos
Alginatos , Hidrogéis , Resinas Acrílicas , Ultrassonografia
12.
ACS Appl Bio Mater ; 3(12): 8943-8952, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019570

RESUMO

Periodontal diseases could be diagnosed through intraoral ultrasound imaging with the advantages of simple operation procedures, low cost, and low safety risks. A couplant is normally placed between transducers and tissues for better ultrasound image quality. If applied intraorally, the couplants should possess good stability in water and robust mechanical properties, as well as strong adhesiveness to transducers and tissues. However, commercial couplants, such as Aquaflex (AF) cannot fulfill these requirements. In this work, inspired by the mussel adhesion mechanism, we reported a poly(vinyl alcohol)-polyacrylamide-polydopamine (PVA-PAM-PDA) hydrogel synthesized by incorporating PDA into the PAM-PVA double-network for intraoral ultrasound imaging. The hydrogel maintains good stability in water as well as exceptional mechanical properties and can adhere to different substrates (i.e., metal, glass, and porcine skin) without losing the original adhesion strength after multiple adhesion-strip cycles. Besides, when applied to porcine mandibular incisor imaging, the PVA-PAM-PDA hydrogel possesses good image quality for diagnosis as AF does. This work provides practical insights into the fabrication of multifunctional hydrogel-based interfaces between human tissues and medical devices for disease diagnosis applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...